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The Rendering Equation
● Intuition
● Recursive Formulation
● Operator Formulation
● Path Integral Formulation
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let’s look at this scene

Intuition
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Paper



how to compute. we can simulate what happens to 
photons

Intuition
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Intuition
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Intuition
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This is a method. lots of variants, store photons in the 
surfaces (photon tracing, radiosity). can also do: trace 
paths of photons

Intuition
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sample direction on hemisphere

Intuition
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importance sampling is also possible (i.e. cast a ray 
directly to the camera)

Intuition
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we have a full path. next slide: other paths can be 
sampled the same way

Intuition
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finally add up per pixel in the camera (see, adding up -> 
integration)

Intuition
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can also start at camera. integrate over hemisphere.

Intuition
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Intuition
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Intuition
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we have a full path. only with a full path we have a light 
measurement (contribution to the pixel).

next slide: other paths can be sampled the same way

Intuition

Adam Celarek 15 source: own work



collect factors on its way to the light, that are multiplied 
with the radiance of the light to compute the 
contribution.

tracing importons, adjoint operation.

tracing ‘bundles of photons’, which become fewer every 
reflection.

trace ‘bundles of importons’

Intuition
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Photons are emitted from light sources, 
reflected by surfaces in the scene until 
they reach the sensor.
In rendering, we (can) go the opposite 
way. We trace importons until they reach 
a light source.

Intuition

Next: Recap and recursive formulation



Recap light integral:

Compute the light which is going into direction v, 
integrate over hemisphere, check all directions for 
incoming light, cosine weighting and material.

next slide: The first think we have to add is light 
emittance.

Recap Light Integral
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Light going in 
direction v

Light from 
direction ω Solid angle 

Material, modelled 
by the BRDF



The first think we have to add is light emittance.

Imagine the camera is directed right at a light source, 
then the emitted light will be the dominating factor.

Some light sources have a larger radiance at certain 
positions or in certain directions (think of a head 
lamp in a car), therefore the Emittance E depends 
on the position and the direction.

The right part of the sum is the same as before: 
integral over the hemisphere of light from direction 
ω, weighted by the cosine and the brdf.

Next: But how to get the radiance coming from 
direction ω?

Recursive Formulation
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Light going in 
direction v

Light from 
direction ω Solid angle 

Material, modelled 
by the BRDF

Light emitted from x 
in direction v



But how to get the radiance coming from direction 
ω? What can we do?

Recursive Formulation
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Solid angle 

Material, modelled 
by the BRDF

Light emitted from x 
in direction v

Light going in 
direction v

Light from 
direction ω ?



Well, this is named recursive formulation. So 
probably we will get it recursively :)

We can sample a ray on the hemisphere..

Recursive Formulation of the Rendering Equation
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Solid angle 

Material, modelled 
by the BRDF

Light emitted from x 
in direction v

Light going in 
direction v

Evaluate light 
from direction ω 
recursively



.. continue recursively until it reaches the light source

Recursive Formulation of the Rendering Equation
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yes, the cat has a question
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Questions?



 

Yes, the cat has a question, but first we make a change 
in notation.

Look at exitant, emitted and incident light.

Recursive Formulation of the Rendering Equation
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Exitant light
going towards 
direction v

Incident light coming from 
direction ω
(evaluate recursively)

Light emitted from x 
in direction v



We now use arrows to show the direction of photons.
(however, ω still points away of the point x).

We also changed the name of the differential (added a 
1), but that is just a variable name.

Next: We said recursion, ..

Recursive Formulation of the Rendering Equation
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Exitant light
going towards 
direction v

Incident light coming from 
direction ω

1

(evaluate recursively)

Light emitted from x 
in direction v



 

This is one expansion of such a recursion.

We are standing on position x1 and want to know how 
much light is coming from directions dω1 (the whole 
hemisphere!)

From a mathematical standpoint we are not sending 
rays, at least not a finite number of rays. We integrate 
over the hemisphere.

However, in the spirit of Monte Carlo and as a mental 
picture, we can trace a ray into direction ω1 to look 
what there is. We hit a point x2, and we can compute 
the exitant radiance for ω2 (ω2 = -ω1).

But, (next slide)

Recursive Formulation of the Rendering Equation
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Inside box: On the left/top we have incoming radiance, 
on the right/bottom we have exitant radiance.

Cat: Is that the same?

Recursive Formulation of the Rendering Equation
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Recap About Physics

Radiance L =
flux per unit projected area per unit solid angle
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dA, dω and dΦ are differentials. check out 
3blue1brown, if you want a really good explanation

we had that already in the lecture about light. Back 
then, we were looking at radiance.

Radiance is the differential flux (measured in Watts, 
think of number of photons) per unit projected area 
per unit solid angle.

“dA projected” accounts for tilting dA, that is the cosine 
rule.

And dω means that we are looking at a infinitesimal 
angle

Therefore we are looking at the amount of energty 
(number of photons) that are flying into directions dω 
in a beam of width dA projected.

https://youtu.be/9vKqVkMQHKk


 

We calculate the differential flux (dΦ) that is sent from 
area differential A2 towards area differential A1. This 
answers the question about how much energy leaves.

(You can see the calculation at the bottom.)

dω2 is the solid angle subtended by dA1 as seen from 
dA2. Photons don’t make turns, so all energy that is 
sent towards dω2 will reach dA1.

L(x2 → ω2) is the radiance sent by dA2 into direction 
ω2, cosθ2dA2 is the projected area (beam width at the 
start), and the fraction is just the solid angle dω2.

Ok, let’s now turn to our receiver.

Recap About Physics
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dA1 dA2

θ2

θ1 dω1
dω2

Solid angle dω
2
 

subtended by 
dA

1
 as seen 

from dA
2



 

L(x1←ω1) is the radiance received by dA1 from 
directions dω1.

In order to compute the differential flux (energy), we 
again have to compute the projected area for dA1, 
and the angles dω1 (which is the solid angle 
subtended by by dA2 as seen from dA1).

Recap About Physics
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Let’s put those two equations right next to each other.

As said, we know that photons don’t make turns (not in 
vacuum), therefore both of the dΦ (energy) are the 
same and we can equate the top equation with the 
bottom one.

We quickly see, that all factors but the L(..) are the 
same. Hence the amount of radiance going from x1 
towards direction ω1 is the same as reaching x2 from 
direction ω2.

Recap About Physics
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Let’s look at the recursive formulation again.

Ok, cool. We can do this. The cat is happy.

Recursive Formulation of the Rendering Equation
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We start from camera → we get a hit point → get the emitted light + the 
reflected light. When computing the reflected light, we have to trace a ray 
again → we get a hit point → …

Realise that the problem is infinitely dimensional. not possible to write down 
analytical solution for any practical scene. have to solve numerically.

monte carlo can deal with many dimensions. But still, in practice we have to 
stop at some point, and we will learn soon how to do that in an unbiased way 
(unbiased means, that we will have the correct result on average).

As said this is the adjoint method, we are tracing importons. And yes, the 
very same integral also works for photons. In that case ‘E(x, v)’ is the 
camera sensor emitting importance (for each sensor element = pixel 
separately). We would then measure, how much importance reaches the 
light surface. Multiplied with the amount of emitted light this would give us 
the same value, and we would be able to update the corresponding pixel 
that sent the emission. This might sound extremely inefficient, but that isn’t 
the case. Just like we can sample a light source directly, we could also 
sample the camera directly, and the method becomes feasible.

Recursive Formulation of the Rendering Equation
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Exitant light
going towards 
direction v

Incident light coming from 
direction ω
(evaluate recursively)

Light emitted from x 
in direction v



 

Recursive Formulation of the Rendering Equation

• First published: The rendering equation, James Kajiya, Siggraph 1986
• This is the most important formulation
• It is used for path tracing, the most common algorithm for physically 

based rendering
• But path tracing or even MC is not the only method to solve the 

rendering equation, see later.
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Next: Operator formulationNext: Operator formulation
35



neat, isn’t it? let’s have a look at what the symbols 
mean

Operator Formulation
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L = Le + TL

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)



written here in terms of radiance / photos / light 
propagation. but very similar for importance / importons 
(adjoint operator)

think of radiance stored on surfaces. then iterate to 
solve

Do you see what that is? L on the left and on the right is 
the same L. we’re looking for the solution, where light 
propagation is in equilibrium. similar to x = a + bx or 
such matrix problems. in fact this is also a linear 
system but with functions instead of simple vectors.

Operator Formulation
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L = Le + TL

Emitted light 
in the scene

All light in the scene

Light transport 
operator

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)



Do you see what that is? L on the left and on the right is 
the same L. we’re looking for the solution, where light 
propagation is in equilibrium. there are similar iterative 
methods for solving certain matrix problems. 

Operator Formulation
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>>> a = 1.5
>>> b = 0.7
>>> x = 1
>>> x = a + b * x; print(x) # 2.2
>>> x = a + b * x; print(x) # 3.04
>>> x = a + b * x; print(x) # 3.628
>>> x = a + b * x; print(x) # 4.0396
>>> x = a + b * x; print(x) # 4.32772
>>> x = a + b * x; print(x) # 4.529404
>>> x = a + b * x; print(x) # 4.6705828

>>> x = a + b * x; print(x) # 4.76940796
>>> x = a + b * x; print(x) # 4.838585572
>>> x = a + b * x; print(x) # 4.8870099004
>>> x = a + b * x; print(x) # 4.92090693028
>>> x = a + b * x; print(x) # 4.9446348512
>>> x = a + b * x; print(x) # 4.96124439584
>>> x = a + b * x; print(x) # 4.97287107709
>>> x = a + b * x; print(x) # 4.98100975396
>>> x = a + b * x; print(x) # 4.98670682777

L = Le + TL



scattering operator..

This is the propagation operator. It turns outgoing 
radiance into incoming radiance, which means that this 
operator is responsible for all the ray tracing.

compared to the recursive formulation, these operators 
are in reverse. before, we were ‘tracing’ importons, 
starting from the camera.

here, on the other hand, we work on ‘light waves’. they 
are propagated in epochs throughout all of the scene.

But again, you can look at the problem from two 
directions, and you can define adjoint versions of both 
formulation of the rendering equation.

Operator Formulation
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T = KG
Local scattering operator
Lo = KLi

Turns incoming radiance into outgoing 
radiance, e.g., material

Light transport 
operator

Propagation operator
Li = GLo

Turns outgoing radiance into 
incoming radiance, e.g. ray tracing

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)



these operators are linear, so cats can cook with them, 
they love cooking with linear things

L = Le + TL
 
 
 
 

Operator Formulation
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these operators are linear, so we can do funny things 
with them

I is the identity

L = Le + TL
L-TL = Le

(I-T)L = Le

L = (I-T)-1 Le

S = (I-T)-1

Operator Formulation
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Solution operator

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)



Operator Formulation

Adam Celarek 42

S = (I-T)-1=     Ti = I + T + T2 + ..

L = E + TE + T2E + ..

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)



All this works (inversion + iteration) only because ..

Let’s take a look how this looks in practice

Operator Formulation

Adam Celarek 43

|Tk| ≤ 1
for some k ≥ 1 and a physically valid scene model

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)



see that top row becomes less bright towards the right -
> norm of T < 1

Operator Formulation (Cornell box, rendered with Nori)
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Le TLe T2Le
T3Le

Le Le+TLe Le+TLe+T2Le

Le+TLe+T2Le+
T2Le



Operator Formulation
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|Tk| ≤ 1
for some k ≥ 1 and a physically valid scene model

In case of non specular materials this is even |T| < 1
Corollary: specular materials, and in particular refractive materials, need a longer expansion

L = Le + TLe + T2Le + ..

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)



several slightly different things exist under this term, 
some are more formal than others.

Operator Formulation

• Based on Veach 97 (PhD thesis)
• We just scratched the surface
• Veach made it quite rigorous and it’s super insightful
• Do not confuse with Heckbert’s notation for light paths:

• L = light source, D = diffuse reflection, S = specular reflection,
E = eye / camera

• LDE -> denotes a direct lighting path
• LDDE -> denotes an indirect lighting path
• LS+DE -> is a caustic path. We will see later what the implications are

Adam Celarek 46



To sum up, this is the operator formulation of light transport. 
We have L, the light distribution in the scene, which equals Le, 
the emitted light and T, the transport operator times L. This 
equation reaches an equilibrium after infinite time / iterations, 
after which it gives us the solution for the light distribution in 
the scene.

It’s always good to have several viewpoints on a problem, as it 
gives you different approaches and notations to understand 
and reason about a problem. 

This notation is used in the radiosity method for GI, which is 
one of the finite element methods (FEM): The scene is 
discretised into small patches. Some of the patches emit light 
(Le). The equation is iterated several times. In every iteration 
we compute compute the outgoing light distribution for each 
patch. This approaches the equilibrium. We are done when the 
updates become small. This method was used in max payne 
for instance (more details in Lehtinen’s slides).

Next: Path integral formulation

Adam Celarek source: own work

Next: Path Integral FormulationNext: Path Integral Formulation
47

L = Le + TL



Look at it with all its glory :)

Yet another reformulation of the same rendering 
equation.

But you probably want to know what the components 
are..

Path Integral Formulation
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This is just an overview, we will look into each 
component in the next slides.
The result I

j
 is the measurement (that is 

brightness/colour) for a certain sensor pixel. The pixel 
is indicated by the j. We integrate over the set of all 
possible transport paths of all lengths. These paths are 
written as x bar. The measure is the differential that is 
needed for integration. And finally, fj is the 
measurement contribution function.

Path Integral Formulation
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Measurement for a 
sensor element (pixel)

Set of all transport paths (all lengths)

Measurement 
contribution function

Path between light 
source and sensor

Measure on Ω



Here we see an example of a path. It connects the light 
source over 3 vertices to the camera. The light source 
and the camera are also vertices. We can describe a 
path as a list of vertices. And as said, we are integrating 
over the set of all possible paths. The shortest possible 
path would be a direct connection between the light 
source and the camera, consisting of just 2 vertices. 
The longest possible path would be of infinite length, so 
it’s actually not possible in the computer^^. The 
measure is a bit abstract for now. Think about it like it is 
responsible for generating the samples, and their pdf, 
which are necessary for Monte Carlo integration. 
Therefore it depends on the path. It can be expanded to 
a product of area measures (or area differentials), one 
area differential for each vertex. It will become clearer 
later. 

Let’s now look at the measurement contribution 
function fj

Path Integral Formulation
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Direction of 
photons



fj is a product of several factors, the light emission Le, 
which is simply the brightness of the light at position x0, 
geometry factors between each pair of vertices G..

And, actually, lets look into these geometry factors, they 
are interesting..

Path Integral Formulation
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So G consists of a visibility term V, the sending and 
receiving cosine, and the distance between the vertices 
squared.

Huh..

-----------------------------

G.. geometry (visibility, cos0, cos1, distance)

x and x’.. neighbouring vertices in the path

V.. visibility (0 or 1)

θ_ο.. angle between normal at x and x’-x

θ’_i.. angle between normal at x’ and x-x’

Path Integral Formulation
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Compare those geometry factors with what we had 
before in physics, when we were looking at 
differential flux: computing it requires the cosine on 
both sides and distance squared!

Before in the Recursive Formulation
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dA1 dA2

θ2

θ1 dω1
dω2

Solid angle dω
1
 

subtended by 
dA

2
 as seen 

from dA
1



 

But it is no where to be found in the recursive 
formulation!

Why is that? Let’s look into it!

Before in the Recursive Formulation
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In the recursive formulation (and also when we 
compute direct lighting using hemisphere sampling) 
we integrate over the hemisphere Ω.

Before in the Recursive Formulation
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Ω



 

We do that by shooting ‘virtual’ rays (they are virtual, 
because we are still in math mode). They have to do 
with differentials and all this integration magic.. So 
we have an infinite amount of these rays, and the 
density of rays is continuous.

Before in the Recursive Formulation
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Ω Shooting rays for integration



 

I hope the visualisation is ok, the ‘density’ of these rays 
is reduced by the same ‘distance squared’ law as 
photon density when emitting light (which I explained 
in the second lecture).

Before in the Recursive Formulation
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Shooting rays for integration

Distance2 rule

Ω



 

When the virtual rays hit a tilted surface, the cosine rule 
comes into effect. Again, for the same reason as with 
photons. So the density is further reduced by the tiled 
surface..

Before in the Recursive Formulation
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Shooting rays for integration

Distance2 rule

cosine ruleθ

Ω



 

And this means, that the missing cosine and distance 
squared is actually embedded in ray casting!

This also fits together well with what I said about the 
adjoint operation of tracing photons – tracing 
importons. Just as photons follow the laws of 
distance square and cosine, importons also do.

Before in the Recursive Formulation
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Shooting rays for integration

Distance2 rule

cosine ruleθ

Ω



 

Another way to look at it is to extend the solid angle dω as a cone. That 
way it ‘finds’ exactly what would be projected on the unit hemisphere. 
The tip is at the centre of the hemisphere (x) and at a unit distance it 
has a cross-section of dω. While it extends along the ray, the area 
becomes larger at a rate of distance squared, and when projecting it 
onto a tilted surface, it becomes larger by a factor of 1/cos(θ).

So the area at the destination is dω r^2 / cos(θ). When we compute the 
probability density, we compute 1 over the area, which means, that we 
arrive at cos(θ)/(r^2 dω) here again.

-
Just as we can ‘map’ a sample from a surface to the hemisphere and 

compute it’s probability in the domain of the hemisphere, we can do the 
same thing vice versa!

-
We are trying to show you the same thing from different angles, for some 

people one angle might work better than the other. And we hope that 
eventually it will make sense to you all :)

Before in the Recursive Formulation
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x

θ

dω

dω r2

Ω

dω r2

cos(θ)

cos(θ)
dω r2Density = 1/Area =



 

Ok, one more:
-
This page is exactly what we had in the lecture about light, when we 

made the change of variables and integrated over the surface of the 
light (hence the dA).

I’ll quickly go over the factors:
Outgoing light at x, integral over the surface, material, light emission Le, 

visibility, receiver cos, emitter cos and distance squared.
-
And hey, actually a very similar equation could be used as a 

second variant of the recursive formulation. We would just have 
to add light emittance before the integral, and then we could plug 
Le(x) (exitant radiance) right into Le(y) (also exitant radiance).

-
We again see a similar situation (two cosines and distance squared), 

even the visibility term is there. That looks pretty much like the G 
term.

-
Ok, back to the path integral formulation, you don’t know all components 

yet..

Before in the Recursive Formulation
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Soft shadows (surface sampling)

Light going in 
direction v

Material, modelled 
by the BRDF

light intensity 
at position y on 
the surface

emitter cos(θ)

receiver cos(θ)
distance

visibility (new, ray tracing)



Again from the start..

-
fj, the measurement contribution function, is a product of the light 
emission Le,

-

geometry factors between each pair of vertices G (which we heard 
about at length just now), the scattering factors fs for each inner 
vertex (reflection point), which model the material,

-

and finally the importance emission from the camera We. 
Remember that we said that we can look at light transport from 2 
different direction, either photons emitted from the light source going 
to the camera, or importons emitted from the camera going towards 
the light source. I’m not aware of a case where We is not 1 (tell me 
if you know :), but we keep it for the symmetry. 

Path Integral Formulation
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Waaaaait, compare path integral on top with the direct light surface 
equation on the bottom. material, geometry term, differential for the 
surface of the light – the last one is the measure dA(x) !!!

-
Hah, the measure in the path integral formulation is a product of dAs → 

The whole integral is integrating over all surfaces at once! Similar to 
dA itself, which integrates over du and dv (uv coordinates), or dω in 
the hemisphere, which integrates over dφ and dθ at the same time.

-
So the path integral formulation is really just an integral which integrates 

over all surfaces at the same time.

Comparison with Surface Sampling
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!

G(x, y)



look into the integration domain

domains and operator notation not the same.

like we just learned I_j is what is rendered on the 
screen, i.e. contains camera filter factors. Operator 
notation is light in the scene.

Path Integral Formulation
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Le TLe T 
∞Le



agnostic to how the path was generated. can generate 
starting from the camera (path tracing, recursive 
formulation), or at the light. depending on that, the 
probabilities of generating that path are different -> 
MIS, BDPT. Also MLT (correlated samples, where each 
sample is a path).

Path Integral Formulation
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Path Integral Formulation

• Cleaner notation, easier to handle with more complex algorithms than 
path tracing (next lecture)
• Framework for computing probability densities on paths
• MIS across path generation directions (Bidirectional path tracing)
• Metropolis light transport (correlated samples / paths)

• Based on Veach 97 (PhD thesis)
• We just scratched the surface
• Veach made it quite rigorous and it’s super insightful

Adam Celarek 66
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Next Lecture: Path Tracing
Reading: Eric Veach’s PhD Thesis

Next Lecture: Path Tracing
Reading: Eric Veach’s PhD Thesis
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