
Adam Celarek

Rendering: The Rendering Equation

Research Division of Computer Graphics

Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria

The Rendering Equation
● Intuition
● Recursive Formulation
● Operator Formulation
● Path Integral Formulation

Adam Celarek 2 source: own work

let’s look at this scene

Intuition

Adam Celarek 3 source: own work

Paper

how to compute. we can simulate what happens to
photons

Intuition

Adam Celarek 4 source: own work

Intuition

Adam Celarek 5 source: own work

Intuition

Adam Celarek 6 source: own work

This is a method. lots of variants, store photons in the
surfaces (photon tracing, radiosity). can also do: trace
paths of photons

Intuition

Adam Celarek 7 source: own work

sample direction on hemisphere

Intuition

Adam Celarek 8 source: own work

importance sampling is also possible (i.e. cast a ray
directly to the camera)

Intuition

Adam Celarek 9 source: own work

we have a full path. next slide: other paths can be
sampled the same way

Intuition

Adam Celarek 10 source: own work

finally add up per pixel in the camera (see, adding up ->
integration)

Intuition

Adam Celarek 11 source: own work

can also start at camera. integrate over hemisphere.

Intuition

Adam Celarek 12 source: own work

Intuition

Adam Celarek 13 source: own work

Intuition

Adam Celarek 14 source: own work

we have a full path. only with a full path we have a light
measurement (contribution to the pixel).

next slide: other paths can be sampled the same way

Intuition

Adam Celarek 15 source: own work

collect factors on its way to the light, that are multiplied
with the radiance of the light to compute the
contribution.

tracing importons, adjoint operation.

tracing ‘bundles of photons’, which become fewer every
reflection.

trace ‘bundles of importons’

Intuition

Adam Celarek 16 source: own work

Adam Celarek 17 source: own work

Photons are emitted from light sources,
reflected by surfaces in the scene until
they reach the sensor.
In rendering, we (can) go the opposite
way. We trace importons until they reach
a light source.

Intuition

Next: Recap and recursive formulation

Recap light integral:

Compute the light which is going into direction v,
integrate over hemisphere, check all directions for
incoming light, cosine weighting and material.

next slide: The first think we have to add is light
emittance.

Recap Light Integral

Adam Celarek 18

Light going in
direction v

Light from
direction ω Solid angle

Material, modelled
by the BRDF

The first think we have to add is light emittance.

Imagine the camera is directed right at a light source,
then the emitted light will be the dominating factor.

Some light sources have a larger radiance at certain
positions or in certain directions (think of a head
lamp in a car), therefore the Emittance E depends
on the position and the direction.

The right part of the sum is the same as before:
integral over the hemisphere of light from direction
ω, weighted by the cosine and the brdf.

Next: But how to get the radiance coming from
direction ω?

Recursive Formulation

Adam Celarek 19

Light going in
direction v

Light from
direction ω Solid angle

Material, modelled
by the BRDF

Light emitted from x
in direction v

But how to get the radiance coming from direction
ω? What can we do?

Recursive Formulation

Adam Celarek 20

Solid angle

Material, modelled
by the BRDF

Light emitted from x
in direction v

Light going in
direction v

Light from
direction ω ?

Well, this is named recursive formulation. So
probably we will get it recursively :)

We can sample a ray on the hemisphere..

Recursive Formulation of the Rendering Equation

Adam Celarek 21

Solid angle

Material, modelled
by the BRDF

Light emitted from x
in direction v

Light going in
direction v

Evaluate light
from direction ω
recursively

.. continue recursively until it reaches the light source

Recursive Formulation of the Rendering Equation

Adam Celarek 22 source: own work

yes, the cat has a question

Adam Celarek 23 source: own work

Questions?

Yes, the cat has a question, but first we make a change
in notation.

Look at exitant, emitted and incident light.

Recursive Formulation of the Rendering Equation

Adam Celarek 24

Exitant light
going towards
direction v

Incident light coming from
direction ω
(evaluate recursively)

Light emitted from x
in direction v

We now use arrows to show the direction of photons.
(however, ω still points away of the point x).

We also changed the name of the differential (added a
1), but that is just a variable name.

Next: We said recursion, ..

Recursive Formulation of the Rendering Equation

Adam Celarek 25

Exitant light
going towards
direction v

Incident light coming from
direction ω

1

(evaluate recursively)

Light emitted from x
in direction v

This is one expansion of such a recursion.

We are standing on position x1 and want to know how
much light is coming from directions dω1 (the whole
hemisphere!)

From a mathematical standpoint we are not sending
rays, at least not a finite number of rays. We integrate
over the hemisphere.

However, in the spirit of Monte Carlo and as a mental
picture, we can trace a ray into direction ω1 to look
what there is. We hit a point x2, and we can compute
the exitant radiance for ω2 (ω2 = -ω1).

But, (next slide)

Recursive Formulation of the Rendering Equation

Adam Celarek 26

Inside box: On the left/top we have incoming radiance,
on the right/bottom we have exitant radiance.

Cat: Is that the same?

Recursive Formulation of the Rendering Equation

Adam Celarek 27

?

Recap About Physics

Radiance L =
flux per unit projected area per unit solid angle

Adam Celarek 28 Slide modified from Jaakko Lehtinen, with permission

dA, dω and dΦ are differentials. check out
3blue1brown, if you want a really good explanation

we had that already in the lecture about light. Back
then, we were looking at radiance.

Radiance is the differential flux (measured in Watts,
think of number of photons) per unit projected area
per unit solid angle.

“dA projected” accounts for tilting dA, that is the cosine
rule.

And dω means that we are looking at a infinitesimal
angle

Therefore we are looking at the amount of energty
(number of photons) that are flying into directions dω
in a beam of width dA projected.

https://youtu.be/9vKqVkMQHKk

We calculate the differential flux (dΦ) that is sent from
area differential A2 towards area differential A1. This
answers the question about how much energy leaves.

(You can see the calculation at the bottom.)

dω2 is the solid angle subtended by dA1 as seen from
dA2. Photons don’t make turns, so all energy that is
sent towards dω2 will reach dA1.

L(x2 → ω2) is the radiance sent by dA2 into direction
ω2, cosθ2dA2 is the projected area (beam width at the
start), and the fraction is just the solid angle dω2.

Ok, let’s now turn to our receiver.

Recap About Physics

Adam Celarek 29 Slide modified from Jaakko Lehtinen, with permission

dA1 dA2

θ2

θ1 dω1
dω2

Solid angle dω
2

subtended by
dA

1
 as seen

from dA
2

L(x1←ω1) is the radiance received by dA1 from
directions dω1.

In order to compute the differential flux (energy), we
again have to compute the projected area for dA1,
and the angles dω1 (which is the solid angle
subtended by by dA2 as seen from dA1).

Recap About Physics

Adam Celarek 30 Slide modified from Jaakko Lehtinen, with permission

dA1 dA2

θ2

θ1 dω1
dω2

Solid angle dω
1

subtended by
dA

2
 as seen

from dA
1

Let’s put those two equations right next to each other.

As said, we know that photons don’t make turns (not in
vacuum), therefore both of the dΦ (energy) are the
same and we can equate the top equation with the
bottom one.

We quickly see, that all factors but the L(..) are the
same. Hence the amount of radiance going from x1
towards direction ω1 is the same as reaching x2 from
direction ω2.

Recap About Physics

Adam Celarek 31 Slide modified from Jaakko Lehtinen, with permission

Let’s look at the recursive formulation again.

Ok, cool. We can do this. The cat is happy.

Recursive Formulation of the Rendering Equation

Adam Celarek 32

!

We start from camera → we get a hit point → get the emitted light + the
reflected light. When computing the reflected light, we have to trace a ray
again → we get a hit point → …

Realise that the problem is infinitely dimensional. not possible to write down
analytical solution for any practical scene. have to solve numerically.

monte carlo can deal with many dimensions. But still, in practice we have to
stop at some point, and we will learn soon how to do that in an unbiased way
(unbiased means, that we will have the correct result on average).

As said this is the adjoint method, we are tracing importons. And yes, the
very same integral also works for photons. In that case ‘E(x, v)’ is the
camera sensor emitting importance (for each sensor element = pixel
separately). We would then measure, how much importance reaches the
light surface. Multiplied with the amount of emitted light this would give us
the same value, and we would be able to update the corresponding pixel
that sent the emission. This might sound extremely inefficient, but that isn’t
the case. Just like we can sample a light source directly, we could also
sample the camera directly, and the method becomes feasible.

Recursive Formulation of the Rendering Equation

Adam Celarek 33

Exitant light
going towards
direction v

Incident light coming from
direction ω
(evaluate recursively)

Light emitted from x
in direction v

Recursive Formulation of the Rendering Equation

• First published: The rendering equation, James Kajiya, Siggraph 1986
• This is the most important formulation
• It is used for path tracing, the most common algorithm for physically

based rendering
• But path tracing or even MC is not the only method to solve the

rendering equation, see later.

Adam Celarek 34

Adam Celarek source: own work

Next: Operator formulationNext: Operator formulation
35

neat, isn’t it? let’s have a look at what the symbols
mean

Operator Formulation

Adam Celarek 36

L = Le + TL

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

written here in terms of radiance / photos / light
propagation. but very similar for importance / importons
(adjoint operator)

think of radiance stored on surfaces. then iterate to
solve

Do you see what that is? L on the left and on the right is
the same L. we’re looking for the solution, where light
propagation is in equilibrium. similar to x = a + bx or
such matrix problems. in fact this is also a linear
system but with functions instead of simple vectors.

Operator Formulation

Adam Celarek 37

L = Le + TL

Emitted light
in the scene

All light in the scene

Light transport
operator

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

Do you see what that is? L on the left and on the right is
the same L. we’re looking for the solution, where light
propagation is in equilibrium. there are similar iterative
methods for solving certain matrix problems.

Operator Formulation

Adam Celarek 38

>>> a = 1.5
>>> b = 0.7
>>> x = 1
>>> x = a + b * x; print(x) # 2.2
>>> x = a + b * x; print(x) # 3.04
>>> x = a + b * x; print(x) # 3.628
>>> x = a + b * x; print(x) # 4.0396
>>> x = a + b * x; print(x) # 4.32772
>>> x = a + b * x; print(x) # 4.529404
>>> x = a + b * x; print(x) # 4.6705828

>>> x = a + b * x; print(x) # 4.76940796
>>> x = a + b * x; print(x) # 4.838585572
>>> x = a + b * x; print(x) # 4.8870099004
>>> x = a + b * x; print(x) # 4.92090693028
>>> x = a + b * x; print(x) # 4.9446348512
>>> x = a + b * x; print(x) # 4.96124439584
>>> x = a + b * x; print(x) # 4.97287107709
>>> x = a + b * x; print(x) # 4.98100975396
>>> x = a + b * x; print(x) # 4.98670682777

L = Le + TL

scattering operator..

This is the propagation operator. It turns outgoing
radiance into incoming radiance, which means that this
operator is responsible for all the ray tracing.

compared to the recursive formulation, these operators
are in reverse. before, we were ‘tracing’ importons,
starting from the camera.

here, on the other hand, we work on ‘light waves’. they
are propagated in epochs throughout all of the scene.

But again, you can look at the problem from two
directions, and you can define adjoint versions of both
formulation of the rendering equation.

Operator Formulation

Adam Celarek 39

T = KG
Local scattering operator
Lo = KLi

Turns incoming radiance into outgoing
radiance, e.g., material

Light transport
operator

Propagation operator
Li = GLo

Turns outgoing radiance into
incoming radiance, e.g. ray tracing

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

these operators are linear, so cats can cook with them,
they love cooking with linear things

L = Le + TL

Operator Formulation

Adam Celarek 40 Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

these operators are linear, so we can do funny things
with them

I is the identity

L = Le + TL
L-TL = Le

(I-T)L = Le

L = (I-T)-1 Le

S = (I-T)-1

Operator Formulation

Adam Celarek 41

Solution operator

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

Operator Formulation

Adam Celarek 42

S = (I-T)-1= Ti = I + T + T2 + ..

L = E + TE + T2E + ..

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

All this works (inversion + iteration) only because ..

Let’s take a look how this looks in practice

Operator Formulation

Adam Celarek 43

|Tk| ≤ 1
for some k ≥ 1 and a physically valid scene model

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

see that top row becomes less bright towards the right -
> norm of T < 1

Operator Formulation (Cornell box, rendered with Nori)

Adam Celarek 44

Le TLe T2Le
T3Le

Le Le+TLe Le+TLe+T2Le

Le+TLe+T2Le+
T2Le

Operator Formulation

Adam Celarek 45

|Tk| ≤ 1
for some k ≥ 1 and a physically valid scene model

In case of non specular materials this is even |T| < 1
Corollary: specular materials, and in particular refractive materials, need a longer expansion

L = Le + TLe + T2Le + ..

Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

several slightly different things exist under this term,
some are more formal than others.

Operator Formulation

• Based on Veach 97 (PhD thesis)
• We just scratched the surface
• Veach made it quite rigorous and it’s super insightful
• Do not confuse with Heckbert’s notation for light paths:

• L = light source, D = diffuse reflection, S = specular reflection,
E = eye / camera

• LDE -> denotes a direct lighting path
• LDDE -> denotes an indirect lighting path
• LS+DE -> is a caustic path. We will see later what the implications are

Adam Celarek 46

To sum up, this is the operator formulation of light transport.
We have L, the light distribution in the scene, which equals Le,
the emitted light and T, the transport operator times L. This
equation reaches an equilibrium after infinite time / iterations,
after which it gives us the solution for the light distribution in
the scene.

It’s always good to have several viewpoints on a problem, as it
gives you different approaches and notations to understand
and reason about a problem.

This notation is used in the radiosity method for GI, which is
one of the finite element methods (FEM): The scene is
discretised into small patches. Some of the patches emit light
(Le). The equation is iterated several times. In every iteration
we compute compute the outgoing light distribution for each
patch. This approaches the equilibrium. We are done when the
updates become small. This method was used in max payne
for instance (more details in Lehtinen’s slides).

Next: Path integral formulation

Adam Celarek source: own work

Next: Path Integral FormulationNext: Path Integral Formulation
47

L = Le + TL

Look at it with all its glory :)

Yet another reformulation of the same rendering
equation.

But you probably want to know what the components
are..

Path Integral Formulation

Adam Celarek 48 Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

This is just an overview, we will look into each
component in the next slides.
The result I

j
 is the measurement (that is

brightness/colour) for a certain sensor pixel. The pixel
is indicated by the j. We integrate over the set of all
possible transport paths of all lengths. These paths are
written as x bar. The measure is the differential that is
needed for integration. And finally, fj is the
measurement contribution function.

Path Integral Formulation

Adam Celarek 49 Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

Measurement for a
sensor element (pixel)

Set of all transport paths (all lengths)

Measurement
contribution function

Path between light
source and sensor

Measure on Ω

Here we see an example of a path. It connects the light
source over 3 vertices to the camera. The light source
and the camera are also vertices. We can describe a
path as a list of vertices. And as said, we are integrating
over the set of all possible paths. The shortest possible
path would be a direct connection between the light
source and the camera, consisting of just 2 vertices.
The longest possible path would be of infinite length, so
it’s actually not possible in the computer^^. The
measure is a bit abstract for now. Think about it like it is
responsible for generating the samples, and their pdf,
which are necessary for Monte Carlo integration.
Therefore it depends on the path. It can be expanded to
a product of area measures (or area differentials), one
area differential for each vertex. It will become clearer
later.

Let’s now look at the measurement contribution
function fj

Path Integral Formulation

Adam Celarek 50 Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

Direction of
photons

fj is a product of several factors, the light emission Le,
which is simply the brightness of the light at position x0,
geometry factors between each pair of vertices G..

And, actually, lets look into these geometry factors, they
are interesting..

Path Integral Formulation

Adam Celarek 51 Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

So G consists of a visibility term V, the sending and
receiving cosine, and the distance between the vertices
squared.

Huh..

G.. geometry (visibility, cos0, cos1, distance)

x and x’.. neighbouring vertices in the path

V.. visibility (0 or 1)

θ_ο.. angle between normal at x and x’-x

θ’_i.. angle between normal at x’ and x-x’

Path Integral Formulation

Adam Celarek 52 Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

Compare those geometry factors with what we had
before in physics, when we were looking at
differential flux: computing it requires the cosine on
both sides and distance squared!

Before in the Recursive Formulation

Adam Celarek 53 Slide modified from Jaakko Lehtinen, with permission

dA1 dA2

θ2

θ1 dω1
dω2

Solid angle dω
1

subtended by
dA

2
 as seen

from dA
1

But it is no where to be found in the recursive
formulation!

Why is that? Let’s look into it!

Before in the Recursive Formulation

Adam Celarek 54

!

In the recursive formulation (and also when we
compute direct lighting using hemisphere sampling)
we integrate over the hemisphere Ω.

Before in the Recursive Formulation

Adam Celarek 55

Ω

We do that by shooting ‘virtual’ rays (they are virtual,
because we are still in math mode). They have to do
with differentials and all this integration magic.. So
we have an infinite amount of these rays, and the
density of rays is continuous.

Before in the Recursive Formulation

Adam Celarek 56

Ω Shooting rays for integration

I hope the visualisation is ok, the ‘density’ of these rays
is reduced by the same ‘distance squared’ law as
photon density when emitting light (which I explained
in the second lecture).

Before in the Recursive Formulation

Adam Celarek 57

Shooting rays for integration

Distance2 rule

Ω

When the virtual rays hit a tilted surface, the cosine rule
comes into effect. Again, for the same reason as with
photons. So the density is further reduced by the tiled
surface..

Before in the Recursive Formulation

Adam Celarek 58

Shooting rays for integration

Distance2 rule

cosine ruleθ

Ω

And this means, that the missing cosine and distance
squared is actually embedded in ray casting!

This also fits together well with what I said about the
adjoint operation of tracing photons – tracing
importons. Just as photons follow the laws of
distance square and cosine, importons also do.

Before in the Recursive Formulation

Adam Celarek 59

Shooting rays for integration

Distance2 rule

cosine ruleθ

Ω

Another way to look at it is to extend the solid angle dω as a cone. That
way it ‘finds’ exactly what would be projected on the unit hemisphere.
The tip is at the centre of the hemisphere (x) and at a unit distance it
has a cross-section of dω. While it extends along the ray, the area
becomes larger at a rate of distance squared, and when projecting it
onto a tilted surface, it becomes larger by a factor of 1/cos(θ).

So the area at the destination is dω r^2 / cos(θ). When we compute the
probability density, we compute 1 over the area, which means, that we
arrive at cos(θ)/(r^2 dω) here again.

-
Just as we can ‘map’ a sample from a surface to the hemisphere and

compute it’s probability in the domain of the hemisphere, we can do the
same thing vice versa!

-
We are trying to show you the same thing from different angles, for some

people one angle might work better than the other. And we hope that
eventually it will make sense to you all :)

Before in the Recursive Formulation

Adam Celarek 60

x

θ

dω

dω r2

Ω

dω r2

cos(θ)

cos(θ)
dω r2Density = 1/Area =

Ok, one more:
-
This page is exactly what we had in the lecture about light, when we

made the change of variables and integrated over the surface of the
light (hence the dA).

I’ll quickly go over the factors:
Outgoing light at x, integral over the surface, material, light emission Le,

visibility, receiver cos, emitter cos and distance squared.
-
And hey, actually a very similar equation could be used as a

second variant of the recursive formulation. We would just have
to add light emittance before the integral, and then we could plug
Le(x) (exitant radiance) right into Le(y) (also exitant radiance).

-
We again see a similar situation (two cosines and distance squared),

even the visibility term is there. That looks pretty much like the G
term.

-
Ok, back to the path integral formulation, you don’t know all components

yet..

Before in the Recursive Formulation

Adam Celarek 61

Soft shadows (surface sampling)

Light going in
direction v

Material, modelled
by the BRDF

light intensity
at position y on
the surface

emitter cos(θ)

receiver cos(θ)
distance

visibility (new, ray tracing)

Again from the start..

-
fj, the measurement contribution function, is a product of the light
emission Le,

-

geometry factors between each pair of vertices G (which we heard
about at length just now), the scattering factors fs for each inner
vertex (reflection point), which model the material,

-

and finally the importance emission from the camera We.
Remember that we said that we can look at light transport from 2
different direction, either photons emitted from the light source going
to the camera, or importons emitted from the camera going towards
the light source. I’m not aware of a case where We is not 1 (tell me
if you know :), but we keep it for the symmetry.

Path Integral Formulation

Adam Celarek 62 Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

Waaaaait, compare path integral on top with the direct light surface
equation on the bottom. material, geometry term, differential for the
surface of the light – the last one is the measure dA(x) !!!

-
Hah, the measure in the path integral formulation is a product of dAs →

The whole integral is integrating over all surfaces at once! Similar to
dA itself, which integrates over du and dv (uv coordinates), or dω in
the hemisphere, which integrates over dφ and dθ at the same time.

-
So the path integral formulation is really just an integral which integrates

over all surfaces at the same time.

Comparison with Surface Sampling

Adam Celarek 63

!

G(x, y)

look into the integration domain

domains and operator notation not the same.

like we just learned I_j is what is rendered on the
screen, i.e. contains camera filter factors. Operator
notation is light in the scene.

Path Integral Formulation

Adam Celarek 64 Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

Le TLe T
∞Le

agnostic to how the path was generated. can generate
starting from the camera (path tracing, recursive
formulation), or at the light. depending on that, the
probabilities of generating that path are different ->
MIS, BDPT. Also MLT (correlated samples, where each
sample is a path).

Path Integral Formulation

Adam Celarek 65 Robust Monte Carlo Methods for Light Transport Simulation (Veach 1997)

Path Integral Formulation

• Cleaner notation, easier to handle with more complex algorithms than
path tracing (next lecture)
• Framework for computing probability densities on paths
• MIS across path generation directions (Bidirectional path tracing)
• Metropolis light transport (correlated samples / paths)

• Based on Veach 97 (PhD thesis)
• We just scratched the surface
• Veach made it quite rigorous and it’s super insightful

Adam Celarek 66

Adam Celarek source: own work

Next Lecture: Path Tracing
Reading: Eric Veach’s PhD Thesis

Next Lecture: Path Tracing
Reading: Eric Veach’s PhD Thesis

67

	Slide 1
	The Rendering Equation
	Intuition
	Intuition
	Intuition
	Intuition
	Intuition
	Intuition
	Intuition
	Intuition
	Intuition
	Intuition
	Intuition
	Intuition
	Intuition
	Intuition
	Slide 17
	Recap Light Integral
	Recursive Formulation
	Recursive Formulation
	Recursive Formulation of the Rendering Equation
	Recursive Formulation of the Rendering Equation
	Questions?
	Slide 24
	Recursive Formulation of the Rendering Equation
	Slide 26
	Slide 27
	Make it physics (a bit)_clipboard0
	Slide 29
	Recap About Physics_clipboard0
	Recap About Physics
	Slide 32
	Recursive Formulation of the Rendering Equation
	Slide 34
	Slide 35
	Operator Formulation
	Operator Formulation
	Operator Formulation
	Operator Formulation
	Operator Formulation
	Operator Formulation
	Operator Formulation
	Operator Formulation
	Operator Formulation (Cornell box, rendered with Nori)
	Operator Formulation
	Operator Formulation
	Slide 47
	Path Integral Formulation
	Path Integral Formulation
	Path Integral Formulation
	Path Integral Formulation
	Path Integral Formulation
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Path Integral Formulation
	Slide 63
	Path Integral Formulation
	Path Integral Formulation
	Slide 66
	Slide 67

