
Rendering: Monte Carlo Integration I

Bernhard Kerbl

Research Division of Computer Graphics

Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria
With slides based on material by Jaakko Lehtinen, used with permission

න

Integrating the cosine-weighted radiance 𝐿𝑖(𝑥, 𝜔) at a point 𝑥

Integral of the light function
over the hemisphere, w.r.t.
direction/solid angle 𝜔

This is easier said than done!

How do we integrate over the hemisphere?

𝐿𝑖(𝑥, 𝜔) depends on lights, geometry… how can we integrate that?

Today’s Goal

Rendering – Monte Carlo Integration I 2

The solution involves methods from statistics, probability and
calculus that are combined to achieve Monte Carlo Integration

This is a lot to take in, some of the concepts are complex

We choose to explore them in an illustrative way because grasping
the underlying ideas makes their application much easier

We will try to present the bare necessities you need to write a
rendering routine two versions: a formal and an intuitive one

Today’s Goal

Rendering – Monte Carlo Integration I 3

Fundamentals Recap

Calculus

Derivatives

Integrals

Probability and Statistics

Discrete/Continuous Random Variables

Uniform/Non-Uniform Distributions

Probability Density Function

Expected Value and Variance

Rendering – Monte Carlo Integration I 4

Derivatives

Derivative 𝑓′(𝑥) of 𝑓(𝑥) gives the rate of change of 𝑓(𝑥) at point 𝑥

Answers the question: how does 𝑦 = 𝑓(𝑥) change within an

infinitesimally small range 𝑑𝑥 around 𝑥
𝑓 𝑥+𝑑𝑥 −𝑓(𝑥)

𝑥+𝑑𝑥−𝑥
=

𝑑𝑦

𝑑𝑥

Closed-form solutions don’t always exist (discontinuous functions)

Functions of multiple variables can be derived w.r.t. any of them,
yielding a partial derivative (indicated by e.g. 𝜕𝑥 instead of 𝑑𝑥)

Rendering – Monte Carlo Integration I 5

Basic notation: 𝐹 𝑥 = 𝑓׬ 𝑥 𝑑𝑥

𝐹 𝑥 is any function that fulfills 𝐹 𝑥 ′ = 𝑓 𝑥 ,
thus it is generally called the “anti-derivative” of 𝑓 𝑥

By this definition, solutions can include arbitrary constants 𝑐, e.g.:

׬ 𝑥 𝑑𝑥 =
2
3
𝑥2

3
+ 𝑐

׬ 𝑥 𝑑𝑥 =
𝑥2

2
+ 𝑐

׬ cos 𝑥 𝑑𝑥 = sin 𝑥 + 𝑐

Indefinite Integral

Rendering – Monte Carlo Integration I 6

Definite Integral: An interpretation

Rendering – Monte Carlo Integration I 7

Basic notation: ׬𝑎
𝑏
𝑓 𝑥 𝑑𝑥, with

the variable of integration 𝑥

the integration interval [𝑎, 𝑏] for 𝑥

the function 𝑓 𝑥 to integrate (integrand)

the differential 𝑑𝑥 for 𝑥

Informally: “The area under the curve”[1]

The differential is an “infinitesimal range”, making 𝑓 𝑥 ⋅ 𝑑𝑥 an
infinitesimal area. The integral is the sum of these areas in [𝑎, 𝑏]

Basic notation: ׬𝑎
𝑏
𝑓 𝑥 𝑑𝑥, with

the variable of integration 𝑥

the integration interval [𝑎, 𝑏] for 𝑥

the function 𝑓 𝑥 to integrate (integrand)

the differential 𝑑𝑥 for 𝑥

Informally: “The area under the curve”[1]

The differential is an “infinitesimal range”, making 𝑓 𝑥 ⋅ 𝑑𝑥 an
infinitesimal area. The integral is the sum of these areas in [𝑎, 𝑏]

Definite Integral: An interpretation

Rendering – Monte Carlo Integration I 8

Δ𝑥

𝑓(𝑥)

Basic notation: ׬𝑎
𝑏
𝑓 𝑥 𝑑𝑥, with

the variable of integration 𝑥

the integration interval [𝑎, 𝑏] for 𝑥

the function 𝑓 𝑥 to integrate (integrand)

the differential 𝑑𝑥 for 𝑥

Informally: “The area under the curve”[1]

The differential is an “infinitesimal range”, making 𝑓 𝑥 ⋅ 𝑑𝑥 an
infinitesimal area. The integral is the sum of these areas in [𝑎, 𝑏]

Definite Integral: An interpretation

Rendering – Monte Carlo Integration I 9

Δ𝑥

𝑓(𝑥)

Basic notation: ׬𝑎
𝑏
𝑓 𝑥 𝑑𝑥, with

the variable of integration 𝑥

the integration interval [𝑎, 𝑏] for 𝑥

the function 𝑓 𝑥 to integrate (integrand)

the differential 𝑑𝑥 for 𝑥

Informally: “The area under the curve”[1]

The differential is an “infinitesimal range”, making 𝑓 𝑥 ⋅ 𝑑𝑥 an
infinitesimal area. The integral is the sum of these areas in [𝑎, 𝑏]

Definite Integral: An interpretation

Rendering – Monte Carlo Integration I 10

𝑓(𝑥)

Δ𝑥

Basic notation: ׬𝑎
𝑏
𝑓 𝑥 𝑑𝑥, with

the variable of integration 𝑥

the integration interval [𝑎, 𝑏] for 𝑥

the function 𝑓 𝑥 to integrate (integrand)

the differential 𝑑𝑥 for 𝑥

Informally: “The area under the curve”[1]

The differential is an “infinitesimal range”, making 𝑓 𝑥 ⋅ 𝑑𝑥 an
infinitesimal area. The integral is the sum of these areas in [𝑎, 𝑏]

Definite Integral: An interpretation

Rendering – Monte Carlo Integration I 11

𝑓(𝑥)

Δ𝑥 = 𝑑𝑥

With a solution for the indefinite integral 𝐹 𝑥 = ׬ 𝑓 𝑥 𝑑𝑥,

we can solve ׬𝑎
𝑏
𝑓 𝑥 𝑑𝑥 = 𝐹 𝑏 − 𝐹(𝑎)

Example:

Unit circle: 𝑥2 + 𝑦2 = 1, area is 𝜋

𝑓 𝑥 = 𝑦 = 1 − 𝑥2

׬ 𝑓 𝑥 𝑑𝑥 =
1

2
(1 − 𝑥2 ⋅ 𝑥 + sin−1 𝑥)

0׬
1
𝑓 𝑥 𝑑𝑥 = 𝐹 1 − 𝐹 0 =

𝜋

4

Solving Definite Integrals

Rendering – Monte Carlo Integration I 12

𝑦

𝑥0 1

1

With a solution for the indefinite integral 𝐹 𝑥 = ׬ 𝑓 𝑥 𝑑𝑥,

we can solve ׬𝑎
𝑏
𝑓 𝑥 𝑑𝑥 = 𝐹 𝑏 − 𝐹(𝑎)

Example:

Unit circle: 𝑥2 + 𝑦2 = 1, area is 𝜋

𝑓 𝑥 = 𝑦 = 1 − 𝑥2

׬ 𝑓 𝑥 𝑑𝑥 =
1

2
(1 − 𝑥2 ⋅ 𝑥 + sin−1 𝑥)

0׬
1
𝑓 𝑥 𝑑𝑥 = 𝐹 1 − 𝐹 0 =

𝜋

4

Solving Definite Integrals

Rendering – Monte Carlo Integration I 13

𝑦

𝑥0 1

1

𝝅

𝟒

Remarks on Definite Integrals

To generalize to 𝑛-D, we will talk about “volume” rather than area

We use subscript-only symbol ׬𝐷 for integral over entire domain 𝐷

Integrating 1 over range [𝑎, 𝑏] gives the length/volume of the range

Integrating 1 over an 𝑛-D domain gives the volume of the domain

A domain 𝐷 with X ∈ [0, 2], 𝑌 ∈ [2, 5] in and Z ∈ [1, 1.5], we have:

𝑉𝑜𝑙 𝐷 = 𝐷׬ 1 𝑑𝐷 = 0׬
2
2׬
5
1׬
1.5

1 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 2 × 3 × 0.5 = 3

Rendering – Monte Carlo Integration I 14

Random Variables

We indicate random variables with capital letters 𝑋, 𝑌, … and some
Greek symbols for special random variables

Random variables are drawn from some domain of possible results

We define an outcome, or “event” for draws from random variables.
𝑋𝑖 marks an observed outcome of a given random variable 𝑋

Random variables can be discrete or continuous. Functions of
random variables can themselves be seen as random variables

Rendering – Monte Carlo Integration I 15

Uniform and Non-Uniform Distributions

Rendering – Monte Carlo Integration I 16

The occurrence of values drawn from a random variable usually
follows a given probability distribution

If a random variable has a uniform distribution, all possible
outcomes are equally likely to occur (e.g., a fair die or fair coin)

For non-uniform distributions, the probability of certain values is
significantly higher than others (e.g., population body height)

Discrete Random Variables

In daily life, we are mostly confronted with discrete random results

A coin flip

Toss of a die

Cards in a deck

Each possible outcome of a random variable is associated with a
specific probability 𝑝. Probabilities must sum up to 1 (100%)

E.g., a fair die: 𝑋 ∈ 1,2,3,4,5,6 and 𝑝1 = 𝑝2 = ⋯ = 𝑝6 =
1

6

Rendering – Monte Carlo Integration I 17

Continuous Random Variables

A continuous random variable 𝑋 with a given range [𝑎, 𝑏) can
assume any value 𝑋𝑖 that fulfills 𝑎 ≤ 𝑋𝑖 < 𝑏

Working with continuous variables generalizes the methodology for
many complex evaluations that depend on probability theory

There are infinitely many possible outcomes and, consequently,
the observation of any specific event has with vanishing probability

How can we find the probabilities for continuous variables?[2]

Rendering – Monte Carlo Integration I 18

Cumulative Distribution Function (CDF)

For continuous variables, we cannot assign probabilities to values

The cumulative distribution function (CDF) lets us compute the
probability of a variable taking on a value in a specified range [2]

We use notation 𝑃𝑋 𝑥 for the CDF of 𝑋’s distribution, which yields
the probability of 𝑋 taking on any value ≤ 𝑥

Rendering – Monte Carlo Integration I 19

0 1

If 𝑋 can take on any value with equal probability, what is the probability of 𝑋 = 0.5?

?

𝑃𝑋 𝑏 − 𝑃𝑋 𝑎 = 𝑃𝑟 𝑎 ≤ 𝑋𝑖 ≤ 𝑏

Read as: 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑋 𝑡𝑎𝑘𝑖𝑛𝑔 𝑜𝑛 𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑏,
𝑚𝑖𝑛𝑢𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑋 𝑡𝑎𝑘𝑖𝑛𝑔 𝑜𝑛 𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑎

Example: uniform variable ξ
generates values in range [0, 1):

𝑃𝜉 𝑥 = 𝑥

𝑃𝜉 0.75 − P𝜉 0. 5 = 0.25

Probability for a Range with CDF

Rendering – Monte Carlo Integration I 20

𝑦

𝑥0 1

1

𝑃(𝑥)

Properties of the CDF

CDF is bounded by [0, 1] and monotonic increasing

Probability of no outcome is 0, the probability of some outcome is 1

Die: Rolling a number between 1 and 6 cannot be less probable
than rolling a number between 1 and 5

CDFs can be applied for discrete
and continuous random variables

How do we compute the CDF?

Rendering – Monte Carlo Integration I 21

𝑦

𝑥0

1
𝑃(𝑥)

Determine the limits [𝑎, 𝑏] of your variable 𝑋

For each outcome, find its probability 𝑝𝑎, … , 𝑝𝑏
The CDF of that variable is then a function 𝑃𝑋 𝑥 = σ𝑖=𝑎

𝑥 𝑝𝑖

Computing the CDF for Discrete Random Variables

Rendering – Monte Carlo Integration I 22

𝑥0

1

𝑝0 𝑝0 𝑝0 𝑝0

𝑝1 𝑝1 𝑝1

𝑝3

𝑝2𝑝2

𝑥0

1

𝑝0 𝑝1

𝑝3
𝑝2

Outcome Probabilities Cumulated Probabilities (CDF)

Probability Density Function (PDF)

The PDF 𝑝(𝑥) is the derivative of the CDF 𝑃(𝑥): 𝑝 𝑥 =
𝑑𝑃(𝑥)

𝑑𝑥

For a PDF 𝑝(𝑥), 𝑃 𝑥 = ׬ 𝑝 𝑥 𝑑𝑥 and 𝑎׬
𝑏
𝑝 𝑥 𝑑𝑥 = 𝑃 𝑏 − 𝑃(𝑎)

𝑝(𝑥) must be positive everywhere: a negative value would mean we

can find [𝑎, 𝑏] such that ׬𝑎
𝑏
𝑝 𝑥 𝑑𝑥 has a negative probability

𝑝𝑋(𝑥) can be understood as the relative probability of 𝑋𝑖 = 𝑥.
I.e., if 𝑝𝑋 𝑎 = 2𝑝𝑋(𝑏), then 𝑋𝑖 = 𝑎 is twice as likely as 𝑋𝑖 = 𝑏

Rendering – Monte Carlo Integration I 23

Notes about the PDF

Notation may look like probability, but PDF values can be >1!

For both discrete and continuous variables, we can reference
“𝑝(𝑥)” to describe their distribution

Summary: for a continuous variable 𝑋 with a known, integrable PDF,
we can find the CDF and probabilities of 𝑋 landing in a given range

…is this actually helpful?

Rendering – Monte Carlo Integration I 24

Creating Variables with Custom Distributions

By discovering the CDF, we have found a powerful new tool

The function is often invertible: this means, we can generate
random variables with a desired distribution!

Rationale: Since the CDF is monotonic increasing, there is a unique
value of 𝑃𝑋 𝑥 for every 𝑥 with 𝑝𝑋 𝑥 > 0

More informally, if we plot a 1D CDF, any 𝑥 value that 𝑋 can take on
has a unique, corresponding coordinate on the 𝑦-axis

Rendering – Monte Carlo Integration I 25

Basic Sampling of Random Variables

We want to generate samples for a custom random variable from a
distribution that we can easily obtain in a computer environment

Our assumed input is the canonical random variable 𝜉:

continuous (i.e., a real data type)

with uniform distribution

in the range [0, 1)

Goal: warp samples of 𝜉 to ones distributed according to some 𝑝(𝑥)

Rendering – Monte Carlo Integration I 26

The Canonical Random Variable

Our assumed default input variable

PDF for 𝜉 is 1 in range [0,1) and 0 everywhere else

CDF for 𝜉 is linear

Important property: we have equality 𝑃 𝜉𝑖 = 𝜉𝑖

Rendering – Monte Carlo Integration I 27

The Inversion Method

For discrete variables: we draw 𝜉 and iterate event probabilities

When their sum first surpasses 𝜉, we have found 𝑋𝑖
For continuous variables: exploit 𝑃𝑋’s bijectivity and use its inverse!

We can use canonic 𝜉 to compute 𝑋𝑖 = 𝑃𝑋
−1(𝜉) according to 𝑝𝑋(𝑥)

Rendering – Monte Carlo Integration I 28

𝜉

0

1
𝑃(𝑥)

𝑋𝑖

𝜉

0

1

𝑋𝑖

𝑝0 𝑝0 𝑝0 𝑝0

𝑝1 𝑝1 𝑝1

𝑝3

𝑝2𝑝2

Example: Exponential Distribution

Used mainly for estimation of time intervals between two events

The probability of a value decreases exponentially

Needs additional parameter 𝜆, often called rate parameter

We can find its PDF and CDF in most probability text books

𝑝 𝑥, 𝜆 = 𝜆𝑒−𝜆𝑥

𝑃 𝑥, 𝜆 = 1 − e−𝜆𝑥, 𝑃−1 𝑥′, 𝜆 = −
log(1−𝑥)

𝜆

Rendering – Monte Carlo Integration I 29

Warping Uniform To Exponential Distribution

Rendering – Monte Carlo Integration I 30

const size_t NUM_SAMPLES = 10'000;

std::array<double, NUM_SAMPLES> exponential_samples{};
std::array<double, NUM_SAMPLES> uniform_samples{};
std::array<double, NUM_SAMPLES> warped_samples{};

void inversionDemo()
{

const double LAMBDA = 5.0;

std::default_random_engine rand_eng_uniform(0xdecaf);
std::default_random_engine rand_eng_exponential(0xcaffe);

std::uniform_real_distribution<double> uniform_dist(0.0, 1.0);
std::exponential_distribution<double> exponential_dist(LAMBDA);

for (int i = 0; i < NUM_SAMPLES; i++)
{

auto R_i = exponential_dist(rand_eng_exponential);
exponential_samples[i] = R_i;

// uniform distribution: CDF(x) = x
auto x_ = uniform_samples[i] = uniform_dist(rand_eng_uniform);

auto X_i = -std::log(1.0 - x_) / LAMBDA;
warped_samples[i] = X_i;

}
}

Histograms of generated samples

Warping Uniform To Exponential Distribution

Rendering – Monte Carlo Integration I 31

𝑋𝑖 = 𝑃𝑋
−1 𝜉𝑖

𝜉𝑖

𝑅𝑖

𝑋𝑖

Warping Uniform To Exponential Distribution

Rendering – Monte Carlo Integration I 32

const size_t NUM_SAMPLES = 10'000;

std::array<double, NUM_SAMPLES> exponential_samples{};
std::array<double, NUM_SAMPLES> uniform_samples{};
std::array<double, NUM_SAMPLES> warped_samples{};

void inversionDemo()
{

const double LAMBDA = 5.0;

std::default_random_engine rand_eng_uniform(0xdecaf);
std::default_random_engine rand_eng_exponential(0xcaffe);

std::uniform_real_distribution<double> uniform_dist(0.0, 1.0);
std::exponential_distribution<double> exponential_dist(LAMBDA);

for (int i = 0; i < NUM_SAMPLES; i++)
{

auto R_i = exponential_dist(rand_eng_exponential);
exponential_samples[i] = R_i;

// uniform distribution: CDF(x) = x
auto x_ = uniform_samples[i] = uniform_dist(rand_eng_uniform);

auto X_i = -std::log(1.0 - x_) / LAMBDA;
warped_samples[i] = X_i;

}
}

This is actually the implementation

in many standard libraries anyway

Mix Multiple Random Variables

Let’s add another variable and combine them for 2D output

In doing so, we are extending our sampling domain

The sampling domain is defined by

The number of variables, and

Their respective ranges

Think of the domain as a space with the axes representing variables

Rendering – Monte Carlo Integration I 33

Joint PDF

If multiple variables are in a domain, the joint PDF probability
density of a given point in that domain depends on all of them

In the simplest case, with independent variables 𝑋 and 𝑌, the joint
PDF of their shared domain PDF is simply 𝑝 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌(𝑦)

We can sample independent variables in a domain by computing
and sampling the inverse of their respective CDFs, separately

Rendering – Monte Carlo Integration I 34

2D with 𝑌 = 𝜉. For 𝑋, use 𝑋 ∈ [0,
𝜋

2
) and 𝑝 𝑥 = cos 𝑥

𝑃𝑋 𝑥 = ׬ 𝑝 𝑥 𝑑𝑥 = cos׬ 𝑥 𝑑𝑥 = sin 𝑥

𝑃𝑋
−1 𝜉 = sin−1(𝜉)

Inversion Method Examples in 2D

Rendering – Monte Carlo Integration I 35

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

Y

X

void inversionDemo2D()
{

std::default_random_engine x_rand_eng(0xdecaf);
std::default_random_engine y_rand_eng(0xcaffe);

std::uniform_real_distribution<double> uniform_dist;

for (int i = 0; i < NUM_SAMPLES; i++)
{

auto x_ = uniform_dist(x_rand_eng);
auto y_ = uniform_dist(y_rand_eng);

auto X_i = x_;
auto Y_i = asin(y_);
samples2D[i] = std::make_pair(X_i, Y_i);

}
}

𝑋 and 𝑌 in range 0,1

For both variables, 𝑝 𝑣 = 2𝑣, 𝑃 𝑣 = 𝑣2, 𝑃−1 𝜉 = 𝜉

Inversion Method Examples in 2D

Rendering – Monte Carlo Integration I 36

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Y

X

std::array<std::pair<double, double>, NUM_SAMPLES> samples2D{};

void inversionDemo2D()
{

std::default_random_engine x_rand_eng(0xdecaf);
std::default_random_engine y_rand_eng(0xcaffe);

std::uniform_real_distribution<double> uniform_dist;

for (int i = 0; i < NUM_SAMPLES; i++)
{

// uniform distribution: CDF(x) = x
auto x_ = uniform_dist(x_rand_eng);
auto y_ = uniform_dist(y_rand_eng);

auto X_i = sqrt(x_);
auto Y_i = sqrt(y_);

samples2D[i] = std::make_pair(X_i, Y_i);
}

}

Let’s pick a slow-growing portion of the distribution function

Compared to 0,1 , densities only double inside range 2,4

Choosing a Different Range

Rendering – Monte Carlo Integration I 37

Try 𝑋 and 𝑌 in range 2,4

For both variables, 𝑝 𝑣 = 2𝑣, 𝑃 𝑣 = 𝑣2, 𝑃−1 𝜉 = 𝜉

Nothing happens.

How can we adapt variable ranges?

Something is missing!

Inversion Method Examples in 2D

Rendering – Monte Carlo Integration I 38

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

Y

X

Consider a given range from 𝑎 to 𝑏 for a variable and a candidate
PDF 𝑓(𝑥) with the desired distribution shape

If ׬𝑎
𝑏
𝑓 𝑥 𝑑𝑥 ≠ 1, 𝑓 𝑥 is not a valid PDF for this variable

The probability that the result is one of all possible results ≠ 100%

To fix this, we compute the proportionality constant 𝑐 = 𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥

and compute a valid 𝑃 𝑥 =
𝐹(𝑥)

𝑐
while ensuring 𝑝 𝑥 ∝ 𝑓(𝑥)

Restricting the PDF / CDF

Rendering – Monte Carlo Integration I 39

For range [𝑎, 𝑏] where 𝑎 ≠ 0, we add
a constant offset 𝑘 = −𝑃(𝑎)

Try 𝑋, 𝑌 ∈ 2,4 and 𝑓 𝑣 = 2𝑣 again

We compute 𝑐𝑌 = 𝑐𝑋 = 2׬
4
2𝑣 𝑑𝑣 = 12 and add 𝑘 = −

4

12
to get:

𝑃 𝑣 =
𝑣2−4

12
, 𝑃−1 𝜉 = 2 3 ⋅ 𝜉 + 1

Restricting the PDF / CDF

Rendering – Monte Carlo Integration I 40

2

2,2

2,4

2,6

2,8

3

3,2

3,4

3,6

3,8

4

2 2,5 3 3,5 4

Y

X

The Inversion Method, Completed

Find a candidate function 𝑓(𝑥) with the desired distribution shape

Choose the range [𝑎, 𝑏] in 𝑓(𝑥) you want your variable to imitate

Determine the indefinite integral 𝐹 𝑥 = ׬ 𝑓 𝑥 𝑑𝑥

Compute the proportionality constant 𝑐 = 𝐹 𝑏 − 𝐹(𝑎)

The CDF for the new variable 𝑋 is 𝑃𝑋 𝑥 =
𝐹 𝑥 −𝐹(𝑎)

𝑐

Compute the inverse of the CDF 𝑃𝑋
−1 𝜉

Use 𝑃𝑋
−1(𝜉) to warp the samples of a canonic random variable

so that they are distributed with 𝑝(𝑥) ∝ 𝑓(𝑥) in the range [𝑎, 𝑏)

Rendering – Monte Carlo Integration I 41

Another Look at the PDF

We saw samples being “warped”: we can interpret the inversion
method as a spatial transformation of uniform samples

Let’s treat regular intervals in the input domain as infinitesimal
hypercubes: a segment in 1D, a square in 2D and a cube in 3D

If we warp a space where each variable is 𝜉 to one with joint PDF

𝑝𝐷, then
1

𝑝𝐷
is the change in volume of the hypercubes after warping

Rendering – Monte Carlo Integration I 42

Visualizing the PDF in 1D

Let’s look at an example with a custom 1D random variable

If the target defines the variable 𝑋, 𝑝𝑋 𝑥 = 2𝑥 means the volume
of transformed hypercubes at x = 1 is half of those at x = 0.5

We check for tiny 1D hypercubes (0.01-long segments)

𝑝𝑋 𝑥 = 2𝑥, 𝑃𝑋 𝑥 = 𝑥2, 𝑥 = 𝑃𝑋
−1 𝜉 = 𝜉 x = 0.5 at 𝜉 = 0.25

1.00 − 0.99 ≈ 0,005:

0.25 − 0.24 ≈ 0,010:

Rendering – Monte Carlo Integration I 43

Visualizing the PDF in 2D

The left represents our inputs and the right our target distribution

This time, we warp grid coordinates with the inversion method

Rendering – Monte Carlo Integration I 44

𝑌 = ξ2 and 𝑋 ∈ 0,1 , 𝑝𝑋 𝑥 = 2𝑥ξ1, ξ2

ξ1, ξ2

The areas of all 2D hypercubes (squares) are scaled by
1

𝑝𝑋 𝑥

On the right, rectangles at (1, 𝑦) are half the width of the original

Visualizing the PDF in 2D

Rendering – Monte Carlo Integration I 45

𝑌 = ξ2 and 𝑋 ∈ 0,1 , 𝑝𝑋 𝑥 = 2𝑥

We just saw samples of 𝑋, 𝑌 ∈ 0,1 with 𝑝𝑋 𝑥 = 2𝑥, 𝑝𝑌(𝑦) = 2𝑦

Visualizing the PDF in 2D

Rendering – Monte Carlo Integration I 46

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

2D Variables with Linear PDFs

In this 2D setup, we have joint PDF 𝑝 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌 𝑦 = 4𝑥𝑦

The areas near point (1,1) are squished to
1

4
of the original squares

Visualizing the PDF in 2D

Rendering – Monte Carlo Integration I 47

ξ1, ξ2 𝑋, 𝑌 ∈ 0,1 , 𝑝𝑋 𝑥 = 2𝑥, 𝑝𝑌 𝑦 = 2𝑦

This PDF condenses areas at higher values of x, 𝑦, expands at lower

If the area changes, the points in it distribute accordingly!

Visualizing the PDF in 2D

Rendering – Monte Carlo Integration I 48

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

2D Variables with Linear PDFs

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Canonic Uniform Variables

Expected Value

Expected value of a continuous variable 𝑋, its domain 𝐷 and

distribution defined by PDF 𝑝𝑋 𝑥 , is defined as:

𝐸 𝑋 𝑝𝑋 = න
𝐷

𝑥 ⋅ 𝑝𝑋 𝑥 𝑑𝑥

Computes a weighted average over domain, basic average if 𝑋 = 𝜉

Answers the question:

“What is the average value that we can expect to draw from 𝑋?”

Rendering – Monte Carlo Integration I 49

Variance

Average (expected), squared deviation from the mean 𝜇 = 𝐸 𝑋 𝑝𝑋

𝜎𝑋
2 = 𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝜇 2

𝑝𝑋

Taking its root 𝜎𝑋
2 yields the standard deviation 𝜎𝑋

Answers the question: “How strongly do values drawn from 𝑋
fluctuate about its expected value?”

Note that, as for expected value, PDF 𝑝𝑋 is included in the definition
Rendering – Monte Carlo Integration I 50

Monte Carlo Integration

With refreshed knowledge of calculus, random variables, CDFs and
PDFs, we have all the tools to approach Monte Carlo integration

Simply put, integration approximates the area under a curve with
increasing accuracy by splitting it into ever smaller, basic shapes

Let us consider this approach to find a way for computing the
integral of given functions by sampling

Rendering – Monte Carlo Integration I 51

Why Monte Carlo Integration?

We cannot always find a closed-form solution for the integral

The light function in rendering is one such case

We might have decent idea what the function of incoming light
looks like, but its exact shape is not known

Computing the total incoming light at a point means evaluating entire
scene geometry for every point we hit

Hard shadows make the light function discontinuous

The rendering equation is an infinite-dimensional (!) integral
Rendering – Monte Carlo Integration I 52

Approximating the Integral

We can sample an integrand 𝑓(𝑥) evenly at regular intervals ℎ

Find areas of trapezoids under the curve and compute their sum

Can simplify to rectangles
instead of trapezoids

Needs more samples for
same precision, but simpler

Rendering – Monte Carlo Integration I 53

𝑓(𝑥)

𝑥

Multidimensional Problems

Regular sampling causes noticeable patterns and aliasing

Need 𝑁𝑛 samples to evaluate an 𝑛-D function at
1

𝑁
intervals

If we want to sample the grid in 2D, we must change the total
number of samples in increments of 2𝑁 + 1, e.g.: 1, 4, 9, 16, etc.

This only gets worse with more dimensions (curse of dimensionality)

Rendering – Monte Carlo Integration I 54

𝑓(𝑥)

𝑥

The integral computed from these samples will vastly underestimate the true value!

The Curse of Dimensionality

Rendering – Monte Carlo Integration I 55

The Curse of Dimensionality

Rendering – Monte Carlo Integration I 56

The Curse of Dimensionality

Rendering – Monte Carlo Integration I 57

Monte Carlo Integration

Two observations for the integration of a function via sampling

The order of the samples doesn’t matter, only their sum

We can switch the fixed interval
1

𝑁
with something expected to be

1

𝑁

Replace fixed-order regular samples with uniform random variable

Doesn’t matter that generated values are not in any defined order

With 𝑁 uniform samples, the expected interval between them is
1

𝑁

Randomness also reduces aliasing problems!

Rendering – Monte Carlo Integration I 58

Monte Carlo Integration for Uniform Variables

We take 𝑁 uniform, random samples and treat the results as if we
obtained them by subdividing the domain into 𝑁 regular intervals

Sum samples of 𝑓 𝑥 , multiply with domain volume and average

If this seems coarse, remember: we want an approximation of the
total area under the curve that improves with increasing 𝑁

Rendering – Monte Carlo Integration I 59

න
𝐷

𝑓 𝑥 𝑑𝑥 ≈
𝑉𝑜𝑙(𝐷)

𝑁
෍

𝑖=1

𝑁

𝑓(𝑋𝑖)

𝑓(𝑥)

𝑎 𝑏

Monte Carlo Integration for Non-Uniform Variables

We can generalize the Monte Carlo integration to work with
variables that have arbitrary PDFs. The final MC formula:

𝑝(𝑋𝑖) tells us how likely it is that samples land in that portion of the
domain: values that are sampled frequently receive a smaller weight

We can see
1

𝑝 𝑋𝑖
as the volume of a hypercube 𝑉𝑋𝑖 at sample

location 𝑋𝑖 and see that
𝑉𝑋𝑖
𝑁
𝑓(𝑋𝑖) is quite close to

𝑉𝑜𝑙 𝐷

𝑁
𝑓(𝑋𝑖)

Rendering – Monte Carlo Integration I 60

න
𝐷

𝑓(𝑥) 𝑑𝑥 ≈ 𝐹𝑁 =
1

𝑁
෍

𝑖=1

𝑁
𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

The Rationale Behind 1/𝑝(𝑥)

Using a non-uniform 𝑝(𝑥) to sample a constant function 𝑓(𝑥)

Sample arrows indicate the value of
1

𝑝(𝑥)
: blue = low, red = high

Red samples are rare, they represent a larger area under the curve

Rendering – Monte Carlo Integration I 61

𝑥0

𝑓(𝑥)

𝑥0

𝑝(𝑥)

The Rationale Behind 1/𝑝(𝑥)

Using a non-uniform 𝑝(𝑥) to sample a non-uniform function 𝑓(𝑥)

Same weight for each sample: overestimates area under the curve

Using
1

𝑁
σ𝑖=1
𝑁 𝑓(𝑋𝑖)

𝑝(𝑋𝑖)
instead of

𝑉𝑜𝑙(𝐷)

𝑁
σ𝑖=1
𝑁 𝑓(𝑋𝑖) is the right choice

Rendering – Monte Carlo Integration I 62

𝑥0

𝑓(𝑥)

𝑥0

𝑝(𝑥)

1

𝑁
෍

𝑖=1

𝑁
𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

𝑉𝑜𝑙(𝐷)

𝑁
෍

𝑖=1

𝑁

𝑓(𝑋𝑖)

The Rationale Behind 1/𝑝(𝑥)

Rendering – Monte Carlo Integration I 63

𝑥0

𝑓(𝑥)

𝑥0

𝑝(𝑥)

1

𝑁
෍

𝑖=1

𝑁
𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

𝑉𝑜𝑙(𝐷)

𝑁
෍

𝑖=1

𝑁

𝑓(𝑋𝑖)

Final word: During Monte Carlo integration,

we use
1

𝑝 𝑥 𝑁
from the start as the Δ𝑥, so that

Δ𝑥 ⋅ 𝑓(𝑥) gives us an area under the curve.

The more samples 𝑁 we take, the closer the

distance between the two closest samples

near a point 𝑥 gets to
1

𝑝 𝑥 𝑁
and the better the

approximation of the true integral, i.e., the

sum of infinitesimal areas under the curve.

Verifying the Monte Carlo Integral

Formal verification that expected value of 𝐹𝑁 is the integral of 𝑓 𝑥

Constants and sums can be moved
out of the expected value operator

Expected value for any event 𝑋𝑖
drawn from 𝑋 is equal to 𝐸[𝑋]

Probability of
𝑓 𝑥

𝑝 𝑥
depends only on 𝑥

Rendering – Monte Carlo Integration I 64

𝐸[𝐹𝑁] = E
1

𝑁
෍

𝑖=1

𝑁
𝑓 𝑋𝑖
𝑝 𝑋𝑖

with 𝑋 ∈ 𝐷

=
1

𝑁
෍

𝑖=1

𝑁

𝐸
𝑓 𝑋𝑖
𝑝 𝑋𝑖

=
1

𝑁
෍

𝑖=1

𝑁

න
𝐷

𝑓 𝑥

𝑝 𝑥
𝑝 𝑥 𝑑𝑥

=
1

𝑁
෍

𝑖1

𝑁

න
𝐷

𝑓 𝑥 𝑑𝑥 = න
𝐷

𝑓 𝑥 𝑑𝑥

Importance Sampling

Importance sampling = picking a good PDF that adapts to 𝑓 𝑥

Intuitive justification: Sample more in places where we have larger
contributions to the integral to capture high-frequency details there

Rendering – Monte Carlo Integration I 65

Choosing the Right PDF

𝐹𝑁 is itself a random variable, variance shows up as random noise

𝑉𝑎𝑟 𝐹𝑁 =
1

𝑁
𝑉𝑎𝑟

𝑓 𝑥

𝑝 𝑥
=

1

𝑁
𝐸

𝑓 𝑥

𝑝 𝑥
− E

𝑓 𝑥

𝑝 𝑥

2

𝑝

No noise if
𝑓 𝑥

𝑝 𝑥
is a constant → what is a good PDF to choose?

Rendering – Monte Carlo Integration I 66

න
𝐷

𝑓 𝑥 𝑑𝑥 ≈ 𝐹𝑁 =
1

𝑁
෍

𝑖=1

𝑁
𝑓 𝑋𝑖
𝑝 𝑋𝑖

Choosing the Right PDF

Choose a PDF that mimics the shape of 𝑓(𝑥), but is easy to sample

Note: ׬𝐷 𝑝(𝑥) 𝑑𝑥 must integrate to 1, so can’t just take 𝑝 𝑥 = 𝑓(𝑥)

To normalize ׬𝐷 𝑓(𝑥) 𝑑𝑥, we would have to know the integral ∴
Rendering – Monte Carlo Integration I 67

The Importance of Importance Sampling

Rendering – Monte Carlo Integration I 68

The Importance of Importance Sampling

Rendering – Monte Carlo Integration I 69

The Importance of Importance Sampling

Rendering – Monte Carlo Integration I 70

Monte Carlo Integration Pseudo Code

A minimal sampling and integration procedure could look like this:

Given: function f(x), PDF p(x) and CDF P(x)

value = 0

for i in [0, N) do

u = uniform_random_sample()

x = P_inverse(u)

value += f(x)/p(x)

end for

value /= N

Rendering – Monte Carlo Integration I 71

References and Further Reading

Slide set based mostly on chapter 13 of Physically Based Rendering: From Theory to Implementation

[1] Steven Strogatz, Infinite Powers: How Calculus Reveals the Secrets of the Universe

[2] Video, Why “probability of 0” does not mean “impossible” | Probabilities of probabilities, part 2:
https://www.youtube.com/watch?v=ZA4JkHKZM50

[3] Video, The determinant | Essence of linear algebra, chapter 6:
https://www.youtube.com/watch?v=Ip3X9LOh2dk

[4] SIGGRAPH 2012 Course: Advanced (Quasi-) Monte Carlo Methods for Image Synthesis,
https://sites.google.com/site/qmcrendering/

Rendering – Monte Carlo Integration I 72

https://www.youtube.com/watch?v=ZA4JkHKZM50
https://www.youtube.com/watch?v=Ip3X9LOh2dk
https://sites.google.com/site/qmcrendering/

