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Today’s Goal

m Integrating the cosine-weighted radiance L; (x, w) at a point x

m Integral of the light function N e moeres
over the hemisphere, w.r.t. repene Solid angle
direction/solid angle w Le(z,v) = /er(ﬂ%w — v)L;(z,w) cos(0,) dw

Light going in
direction v

m This is easier said than done!
m How do we integrate over the hemisphere?
m L;(x,w) depends on lights, geometry... how can we integrate that?
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Today’s Goal

m The solution involves methods from statistics, probability and
calculus that are combined to achieve Monte Carlo Integration

m This is a lot to take in, some of the concepts are complex

m We choose to explore them in an illustrative way because grasping
the underlying ideas makes their application much easier

m We will try to present the bare necessities you need to write a
rendering routine two versions: a formal and an intuitive one
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Fundamentals Recap TU

m Calculus

m Derivatives
m Integrals

m Probability and Statistics
m Discrete/Continuous Random Variables
m Uniform/Non-Uniform Distributions
m Probability Density Function
m Expected Value and Variance
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Derivatives TV

m Derivative f'(x) of f(x) gives the rate of change of f(x) at point x

m Answers the question: how does y = f(x) change within an
fx+dx)—f(x) _ Q)

xX+dx—x o dx

infinitesimally small range dx around x (

m Closed-form solutions don’t always exist (discontinuous functions)

m Functions of multiple variables can be derived w.r.t. any of them,
vielding a partial derivative (indicated by e.g. dx instead of dx)

Vol
\
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Indefinite Integral TU

m Basic notation: F(x) = [ f(x) dx

m F(x) is any function that fulfills F(x)' = f(x),
thus it is generally called the “anti-derivative” of f(x)

m By this definition, solutions can include arbitrary constants c, e.g.:
m [Vxdx = \/_

s [xdx= 7+c

+ c

m [cosxdx=sinx+c
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Definite Integral: An interpretation

= Basic notation: f;f(x) dx, with

the variable of integration x

O
m theintegration interval [a, b] for x AT f(x)

m the function f(x) to integrate (integrand) \//
O

the differential dx for x

m Informally: “The area under the curve”!ll >

m The differential is an “infinitesimal range”, making f(x) - dx an
infinitesimal area. The integral is the sum of these areas in [a, b]

NS
\
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Definite Integral: An interpretation
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Definite Integral: An interpretation

= Basic notation: f;f(x) dx, with

AY
m the variable of integration x ﬁqc
m theintegration interval [a, b] for x /"“‘?-<L<<
m the function f(x) to integrate (integrand) _
= the differential dx for x £+
m Informally: “The area under the curve”!ll . %

m The differential is an “infinitesimal range”, making f(x) - dx an
infinitesimal area. The integral is the sum of these areas in [a, b]
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Definite Integral: An interpretation

= Basic notation: f;f(x) dx, with

m the variable of integration x A 4 Ax = dx
m theintegration interval [a, b] for x /""‘?T
m the function f(x) to integrate (integrand) \/
m the differential dx for x £l
S
m Informally: “The area under the curve”!l] - P

m The differential is an “infinitesimal range”, making f(x) - dx an
infinitesimal area. The integral is the sum of these areas in [a, b]

N3l
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Solving Definite Integrals

m With a solution for the indefinite integral F(x) = [ f(x) dx,
we can solve f;f(x) dx = F(b) — F(a)

m Example:

m Unitcircle: x? +y% =1, areaism
" f(x)=y=v1 —x? 1
[ (%) dx=%(\/1 —x2-x +sin"1x)

T

" folf(x) dx =F(1) —F(0) = -

4
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Remarks on Definite Integrals

m To generalize to n-D, we will talk about “volume” rather than area

m We use subscript-only symbol fD for integral over entire domain D

m Integrating 1 over range [a, b] gives the length/volume of the range

m Integrating 1 over an n-D domain gives the volume of the domain

m Adomain D withX € [0,2],Y € [2,5] inand Z € |1, 1.5], we have:
Vol(D) = [, 1dD = [, [ [:°1 dxdydz=2%3x05 =3

Vol
\
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Random Variables TV

m We indicate random variables with capital letters X, Y, ... and some
Greek symbols for special random variables

m Random variables are drawn from some domain of possible results

m We define an outcome, or “event” for draws from random variables.
X; marks an observed outcome of a given random variable X

m Random variables can be discrete or continuous. Functions of
random variables can themselves be seen as random variables

D I 7
\
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Uniform and Non-Uniform Distributions

m The occurrence of values drawn from a random variable usually
follows a given probability distribution

m If a random variable has a uniform distribution, all possible
outcomes are equally likely to occur (e.g., a fair die or fair coin)

m For non-uniform distributions, the probability of certain values is
significantly higher than others (e.g., population body height)

Vol
\
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Discrete Random Variables

m In daily life, we are mostly confronted with discrete random results
m A coinflip
m Toss of a die
m Cardsin a deck

m Each possible outcome of a random variable is associated with a
specific probability p. Probabilities must sumup to 1 (100%)

= E.g, afairdie: X €{1,2,3,4,56}and p; =p, = - = p, =%
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Continuous Random Variables

m A continuous random variable X with a given range [a, b) can
assume any value X; that fulfillsa < X; < b

m Working with continuous variables generalizes the methodology for
many complex evaluations that depend on probability theory

m There are infinitely many possible outcomes and, consequently,
the observation of any specific event has with vanishing probability

m How can we find the probabilities for continuous variables?!2]

D I 7
\
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Cumulative Distribution Function (CDF)

m For continuous variables, we cannot assign probabilities to values

0 ‘? 1

If X can take on any value with equal probability, what is the probability of X = 0.57

m The cumulative distribution function (CDF) lets us compute the
probability of a variable taking on a value in a specified range %

m We use notation Py (x) for the CDF of X’s distribution, which yields
the probability of X taking on any value < x

N\ ’
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Probability for a Range with CDF

m Py(b) — Py(a) = Pr{a < X; < b}

m Read as: the probability of X taking on any value from 0 to b,
minus the probability of X taking on any value from 0 to a

m Example: uniform variable &
generates values in range [0, 1):

[ Pg(X) =X Y P (x)
s P:(0.75) — P£(0.5) = 0.25

‘ \'\
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Properties of the CDF

m CDF is bounded by [0, 1] and monotonic increasing

m Probabi

m Die: Rol
than rol

m CDFs can be applied for discrete 1
and continuous random variables

m How do we compute the CDF?
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ity of no outcome is 0, the probability of some outcome is 1

ing a number between 1 and 6 cannot be less probable
ing a number between 1 and 5

P(x)




Computing the CDF for Discrete Random Variables

m Determine the limits [a, b| of your variable X
m For each outcome, find its probability p,, ..., Dy
m The CDF of that variable is then a function Py (x) = Y7, p;

1)\ 1)\
b3
Po X Po Po Po Po
0 X ] 0 X
Outcome Probabilities Cumulated Probabilities (CDF)

1 N
\
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Probability Density Function (PDF)

dP(x)

m The PDF p(x) is the derivative of the CDF P(x): p(x) = dx

m Fora PDF p(x), P(x) = [ p(x) dx and ffp(x) dx = P(b) — P(a)

m p(x) must be positive everywhere: a negative value would mean we

can find [a, b] such that f: p(x) dx has a negative probability

m py(x) can be understood as the relative probability of X; = x.
l.e., if py(a) = 2px(b), then X; = a is twice as likelyas X; = b

N \
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Notes about the PDF

m Notation may look like probability, but PDF values can be >1!

m For both discrete and continuous variables, we can reference
“pD(x)” to describe their distribution

® Summary: for a continuous variable X with a known, integrable PDF,
we can find the CDF and probabilities of X landing in a given range

® ...is this actually helpful?

N3l
\
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Creating Variables with Custom Distributions

m By discovering the CDF, we have found a powerful new tool

m The function is often invertible: this means, we can generate
random variables with a desired distribution!

m Rationale: Since the CDF is monotonic increasing, there is a unique
value of Py (x) for every x with py(x) > 0

m More informally, if we plot a 1D CDF, any x value that X can take on
has a unique, corresponding coordinate on the y-axis

IR )
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Basic Sampling of Random Variables

m We want to generate samples for a custom random variable from a
distribution that we can easily obtain in a computer environment

m Our assumed input is the canonical random variable ¢:
m continuous (i.e., a real data type)
= with uniform distribution
m inthe range [0, 1)

m Goal: warp samples of ¢ to ones distributed according to some p(x)

NS
\
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The Canonical Random Variable m

m Our assumed default input variable

m PDFfor ¢ is1inrange [0,1) and 0 everywhere else
m CDF for ¢ is linear

» Important property: we have equality P(&;) = &;
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The Inversion Method

m For discrete variables: we draw ¢ and iterate event probabilities

m When their sum first surpasses ¢, we have found X;

m For continuous variables: exploit Py’s bijectivity and use its inverse!
m We can use canonic ¢ to compute X; = Py 1 (&) according to py (x)

P3

P2 P2
I P1 P1 P1
Po I Po Po Po

0
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Example: Exponential Distribution

m Used mainly for estimation of time intervals between two events
m The probability of a value decreases exponentially
m Needs additional parameter A, often called rate parameter

m We can find its PDF and CDF in most probability text books
mp(x, 1) = le™M

B P(x,))=1—e™ P 1(x" 1) = logt1-x)

A
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Warping Uniform To Exponential Distribution

const size t NUM_SAMPLES = 10'000;

std::array<double, NUM SAMPLES> exponential samples{};
std::array<double, NUM SAMPLES> uniform_samples{};
std::array<double, NUM _SAMPLES> warped samples{};

void inversionDemo()

{
const double LAMBDA = 5.0;
std::default random engine rand_eng_uniform(@xdecaf);
std::default random _engine rand_eng_exponential(@xcaffe);
std::uniform real distribution<double> uniform_dist(©.0, 1.0);
std::exponential distribution<double> exponential dist(LAMBDA);
for (int i = @; i < NUM_SAMPLES; i++)
{
auto R_i = exponential dist(rand_eng_exponential);
exponential samples[i] = R_i;
// uniform distribution: CDF(x) = x
auto x_ = uniform_samples[i] = uniform_dist(rand_eng uniform);
auto X_i = -std::1log(1.0 - x_) / LAMBDA;
warped_samples[i] = X i;
}
}
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Warping Uniform To Exponential Distribution

m Histograms of generated samples
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Warping Uniform To Exponential Distribution

const size t NUM_SAMPLES = 10'000;

std::array<double, NUM SAMPLES> exponential samples{};
std::array<double, NUM SAMPLES> uniform_samples{};
std::array<double, NUM _SAMPLES> warped samples{};

void inversionDemo()

{
const double LAMBDA = 5.0;
std::default random engine rand_eng_uniform(@xdecaf);
std::default random _engine rand_eng_exponential(@xcaffe);
std::uniform real distribution<double> uniform_dist(©.0, 1.0);
std::exponential distribution<double> exponential dist(LAMBDA);
for (int i = @; i < NUM_SAMPLES; i++)
{
auto R_i = exponential dist(rand_eng_exponential);
exponential samples[i] = R_i;
// uniform distribution: CDF(x) = X
auto x_ = uniform_samples[i] = uniform_dist(rand_eng uniform);
auto X_i = -std::1log(1.0 - x_) / LAMBDA;
} warped_samples[i] = X_i; This is actually the implementation
} in many standard libraries anyway
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Mix Multiple Random Variables

m Let’s add another variable and combine them for 2D output
m In doing so, we are extending our sampling domain

m The sampling domain is defined by
m The number of variables, and
m Their respective ranges

m Think of the domain as a space with the axes representing variables

‘ \'\
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Joint PDF

m If multiple variables are in a domain, the joint PDF probability
density of a given point in that domain depends on all of them

m In the simplest case, with independent variables X and Y, the joint
PDF of their shared domain PDF is simply p(x,y) = px(x)py(y)

m We can sample independent variables in a domain by computing
and sampling the inverse of their respective CDFs, separately
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m 2DwithY =& . For X, use X € [O,g) and p(x) = cosx

Inversion Method Examples in 2D

m Py(x) = [ p(x) dx = [cosxdx = sinx
= Py'(§) = sin™'(§)

void inversionDemo2D()

{

}

std: :default random engine x_rand_eng(®@xdecaf);
std::default random engine y_rand_eng(@xcaffe);

std: :uniform_real distribution<double> uniform_dist;

for (int i = @; i < NUM_SAMPLES; i++)
{

auto x_ = uniform_dist(x_rand_eng);
auto y_ = uniform_dist(y_rand_eng);
auto X_i = x_;

auto Y_i = asin(y_);

samples2D[i] = std::make_pair(X_i, Y_i);

}

Rendering — Monte Carlo Integration |
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Inversion Method Examples in 2D

m Xand Y inrange [0,1)
m For both variables, p(v) = 2v, P(v) = v%, P71(§) = \/E

std::array<std::pair<double, double>, NUM_SAMPLES> samples2D{};

1 “.8 ‘.
void inversionDemo2D() o 0o 0°?d
09 |® o ® L)

{ ’ 1 ‘. *'..:..
std::default random engine x_rand_eng(@xdecaf); 0.8 o8 o
std::default random engine y_ rand_eng(@xcaffe); ’ :o K ..:.0

[
0,7 e o o &
std::uniform real distribution<double> uniform_dist; s %° )
0.6 o0 .:o
for (int i = ©; i < NUM_SAMPLES; i++) v 05 ©."°
{ ' % °
. e o o0 0t
// uniform distribution: CDF(x) = X 0,4 ° -
auto x_ = uniform_dist(x_rand_eng); ® ¢e
auto y_ = uniform_dist(y_rand_eng); 0,3 oo
[}
auto X_i = sqrt(x_); 0.2 y .‘
auto Y_i = sqrt(y_); 01 ®e ¢
samples2D[i] = std::make_pair(X_i, Y_i); 0 ¢
o o1 02 03 04 05 06 07 08 09 1
}
} X
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Choosing a Different Range

m Let’s pick a slow-growing portion of the distribution function

m Compared to |[0,1), densities only double inside range | 2,4 )

Y
o ~ N w EN U o ~ o5
Y
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Inversion Method Examples in 2D

m Try X and Y in range [2,4)
m For both variables, p(v) = 2v, P(v) = v%, P71(§) = \/E

4
3,5

m Nothing happens. ;

2,5

m How can we adapt variable ranges? " °

1,5

m Something is missing! 05 m

0 0,5 1 15 2 2,5 3 3,5 4
X -

‘ K
\
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Restricting the PDF / CDF

m Consider a given range from a to b for a variable and a candidate
PDF f(x) with the desired distribution shape

m If f:f(x) dx # 1, f(x) is not a valid PDF for this variable

m The probability that the result is one of all possible results = 100%

m To fix this, we compute the proportionality constant ¢ = f: f(x)dx
F(x)

and compute a valid P(x) = while ensuring p(x) « f(x)

Cc

N\
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Restricting the PDF / CDF

m Forrange [a, b] where a # 0, we add RN R R ?{
a constant offset k = —P(a) . < - 5,;:..1..:'.{,.[}3;
. e ...‘i o F .°.°.::.s..°..:.3 ‘::os‘ 3.".'3.""3' as
32 ..::g:: ‘: 0.8.3'.; ‘.o‘i 0. :.:.':.0
*en°8,0 SO "O’ ® .‘}’o °Q
Y 3 . ..o&.:.o: 0... ® :0 "..... ‘..o.°o

28 8 e 5‘0: . e °‘:°..t % 0:&}:3,.‘#: o

. ’ .° .:- .o..}&.o.-,':.:. 3 :'.:".

= TryX,Y €[24)and f(v) = 2vagain  =c o 7 oot A i) TV
ST IR PR L Kb

22 o S e % ¢ oi.‘ ‘o:so.o.

2 ....o ot '.‘.' :.0.8'. 2o, , %2
2 2,5 3 3,5 4

m We compute ¢y = ¢y = f; 2vdv =12and add k = —%to get:
V% —4

P(v)=—, PT1(§) =2{3-{+1 <




The Inversion Method, Completed

m Find a candidate function f (x) with the desired distribution shape

m Choose the range |a, b] in f(x) you want your variable to imitate
m Determine the indefinite integral F(x) = [ f(x) dx
m Compute the proportionality constant ¢ = F(b) — F(a)

F(x)—F(a)
C

m The CDF for the new variable X is Py(x) =
m Compute the inverse of the CDF Py (&)

m Use Py 1(&) to warp the samples of a canonic random variable
so that they are distributed with p(x) « f(x) in the range |a, b)

b |
\
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Another Look at the PDF

m We saw samples being “warped”: we can interpret the inversion
method as a spatial transformation of uniform samples

m Let’s treat regular intervals in the input domain as infinitesimal
hypercubes: a segment in 1D, a square in 2D and a cube in 3D

m If we warp a space where each variable is ¢ to one with joint PDF

Pp, then pi is the change in volume of the hypercubes after warping
D

N3l
\
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Visualizing the PDF in 1D

m Let’s look at an example with a custom 1D random variable

m If the target defines the variable X, py(x) = 2x means the volume
of transformed hypercubes at x = 1 is half of those at x = 0.5

m We check for tiny 1D hypercubes (0.01-long segments)

mpy(x) = 2x, Py(x) = x%,x = Py 1(§) = \/E <x=05at&=0.25
m v1.00 —v0.99 = 0,005: —
m v0.25-+0.24 = 0,010: ——

N3l
\
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Visualizing the PDF in 2D

m The left represents our inputs and the right our target distribution

m This time, we warp grid coordinates with the inversion method

1.0 -

0.8

0.6 1

0.4 -

0.2 -

0.0 A

0.0 0.2 0.4

EliEZ
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Visualizing the PDF in 2D

m The areas of all 2D hypercubes (squares) are scaled by

1
px(x)

m On the right, rectangles at (1, y) are half the width of the original

1.0 - 1.0 -
0.8 - 0.8 A
0.6 1 0.6 -
0.4 0.4
0.2 1 0.2 1
0.0 1 ‘ 0.0 A ‘
00 02 04 06 08 1.0 0.0 02 04 06 08 10
$1, 62 Y =§ and X € [0,1), px(x) = 2x 1\&
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Visualizing the PDF in 2D

= We just saw samples of X, Y € [0,1) with px(x) = 2x,py(y) = 2y
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Visualizing the PDF in 2D

= In this 2D setup, we have joint PDF p(x,y) = px(x)py(y) = 4xy

m The areas near point (1,1) are squished to i of the original squares

1.0 1 ‘ 1.0 1 ‘
0.8 - 0.8 1
0.6 1 0.6 -
0.4 - 0.4 1
0.2 0.2 1
0.0 - 0.0 A
00 02 04 06 08 10 00 02 04 06 08 1.0

$1, 62 X,Y €10,1),px(x) = 2x,py(y) = 2y 1\3
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Visualizing the PDF in 2D

m This PDF condenses areas at higher values of X, y, expands at lower
m If the area changes, the points in it distribute accordingly!

Canonic Uniform Variables 2D Variables with Linear PDFs
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Expected Value

m Expected value of a continuous variable X, its domain D and
distribution defined by PDF py(x), is defined as:

ElXlpy = [ 5+ px(o) dx
D
m Computes a weighted average over domain, basic average if X = ¢

m Answers the question:
“What is the average value that we can expect to draw from X?”

‘ \'\
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Variance

m Average (expected), squared deviation from the mean u = E[X],
ox =Var(X) = E[(X — w)?]p,
m Taking its root 1/ o yields the standard deviation oy

m Answers the question: “How strongly do values drawn from X
fluctuate about its expected value?”

= Note that, as for expected value, PDF py is included in the definition

NG
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Monte Carlo Integration

m With refreshed knowledge of calculus, random variables, CDFs and
PDFs, we have all the tools to approach Monte Carlo integration

m Simply put, integration approximates the area under a curve with
increasing accuracy by splitting it into ever smaller, basic shapes

m Let us consider this approach to find a way for computing the
integral of given functions by sampling
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Why Monte Carlo Integration?

m We cannot always find a closed-form solution for the integral

m The light function in rendering is one such case

m We might have decent idea what the function of incoming light
looks like, but its exact shape is not known

m Computing the total incoming light at a point means evaluating entire
scene geometry for every point we hit

m Hard shadows make the light function discontinuous
m The rendering equation is an infinite-dimensional (!) integral

D I 7
\
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Approximating the Integral m

m We can sample an integrand f (x) evenly at regular intervals h

m Find areas of trapezoids under the curve and compute their sum

m Can simplify to rectangles £(2)
instead of trapezoids Q\
h
» Needs more samples for RN
same precision, but simpler
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Multidimensional Problems

m Regular sampling causes noticeable patterns and aliasing

The integral computed from these ® samples will vastly underestimate the true value!

. 1.
m Need N™ samples to evaluate an n-D function at 5 intervals

= If we want to sample the grid in 2D, we must change the total
number of samples in increments of 2N + 1, e.g.: 1,4, 9, 16, etc.

m This only gets worse with more dimensions (curse of dimensionality)

Vol
\
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The Curse of Dimensionality
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Monte Carlo Integration

m Two observations for the integration of a function via sampling
m The order of the samples doesn’t matter, only their sum

. . . 1. . 1
m We can switch the fixed interval ~ with something expected to be ~

m Replace fixed-order regular samples with uniform random variable

m Doesn’t matter that generated values are not in any defined order

. . . .1
m With N uniform samples, the expected interval between them is ~

m Randomness also reduces aliasing problems!

IR )
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Monte Carlo Integration for Uniform Variables

m We take N uniform, random samples and treat the results as if we
obtained them by subdividing the domain into N regular intervals

= Sum samples of f(x), multiply with domain volume and average

4 ~
! @
1
o ®
| |

m If this seems coarse, remember: we want an approximation of the
total area under the curve that improves with increasing N

‘ ]
\
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Monte Carlo Integration for Non-Uniform Variables

m We can generalize the Monte Carlo integration to work with
variables that have arbitrary PDFs. The final MC formula:

N
AN
Jreax = - N;mxa

m p(X;) tells us how likely it is that samples land in that portion of the
domain: values that are sampled frequently receive a smaller weight

p&_) as the volume of a hypercube 'y, at sample

Vx
location X; and see that —f(X ) is quite close to f(X;)

D I 7
\
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The Rationale Behind 1/p(x)

p(x)

f(x)

[ LI 1

0 X . 0 X

m Using a non-uniform p(x) to sample a constant function f (x)

m Sample arrows indicate the value of% blue = low, red = high

m Red samples are rare, they represent a larger area under the curve

B K5
\
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The Rationale Behind 1/p(x)

p(x)

0 X > 0 X

m Using a non-uniform p(x) to sample a non-uniform function f(x)
m Same weight for each sample: overestimates area under the curve

= Using — Z{V 1£§ '3 instead of VOI(D)Z _1 f (X;) is the right choice

‘ \"n-
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The Rationale Behind 1/p(x)

A 4

Y

Final word: During Monte Carlo integration,

we use L from the start as the Ax, so that
p(x)N

Ax - f(x) gives us an area under the curve.
The more samples N we take, the closer the
distance between the two closest samples

. 1
near a point x gets to SGON and the better the

approximation of the true integral, i.e., the
sum of infinitesimal areas under the curve.
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Verifying the Monte Carlo Integral

m Formal verification that expected value of Fy is the integral of f(x)

N
T o &) .
= Constants and sums can be moved  E[Fy] = E |+ ZP(X with X €D

out of the expected value operator

1[0
B NZE p(X;)
fx)
Nz Dp(x) p(x) dx
f(x)

m Probability of —= depends only on x
Y p(x) P Y =%2Jf(x) dx =jf(x) dx

m Expected value for any event X;
drawn from X is equal to E'| X]

%
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Importance Sampling M

m Importance sampling = picking a good PDF that adapts to f (x)

m Intuitive justification: Sample more in places where we have larger
contributions to the integral to capture high-frequency details there
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Choosing the Right PDF TU

1 O fX)

Z

fo(x) ax = Fu = N Lip(x)

m Fy is itself a random variable, variance shows up as random noise

1 FO _ Lp|[(f® _ g [f®
m Var(Fy) = Var (p(x)) N [(p(x) p(x) ) ]

f(x) .
f

p(x)

e
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Choosing the Right PDF TU

A f(z) A f(z)
A LTI
1 % 7
UV
Y p(z) Yo(z)
(a) Uniform (b) Importance

m Choose a PDF that mimics the shape of f(x), but is easy to sample
= Note: fD p(x) dx must integrate to 1, so can’t just take p(x) = f(x)

¥

m To normalize fo(x) dx, we would have to know the integral .-
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The Importance of Importance Sampling

5 Samples/Pixel

[ & \
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The Importance of Importance Sampling

e

5 Samples/Pixel, no importance sampling
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The Importance of Importance Sampling

5 Samples/Pixel, with importance sampling
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Monte Carlo Integration Pseudo Code

m A minimal sampling and integration procedure could look like this:

Given: function {(x), PDF p(x) and CDF P(x)

value = 0

for11in [0, N) do
u = uniform_random_sample()
x = P_inverse(u)
value += {(x)/p(x)

end for

value /= N
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Slide set based mostly on chapter 13 of Physically Based Rendering: From Theory to Implementation
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