Rendering: Spatial Acceleration Structures

Bernhard Kerbl

Research Division of Computer Graphics
Institute of Visual Computing & Human-Centered Technology
TU Wien, Austria

With slides based on material by Jaakko Lehtinen, used with permission

How to produce an image?

m A good image needs realistic intensity and visibility
m Intensity creates stimulus of optic nerve (black, white, color)
m Visibility makes sure that objects adhere to depth

How would you process the scene on the right to make sure
the rendered output image is correct?

m (Naive) Ray-Casting Render Loop

m Shoot a ray through each pixel into the scene e e e o ‘et st
m |terate over all objects and test for intersection
m Record the closest intersection (visibility)

m Compute color and write to pixel (intensity)

Rendering — Spatial Acceleration Structures 2

Render Loop m

void render(Camera cam)

computeColor(closest); }

{
for(Pixel& pix : pixels)
{
pix.Color = background;
Intersection closest;
closest.Distance = INFINITY;
Ray ray = rayThroughPixel(cam, pix);
for (Triangle& tri : triangles)
{
Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }
}
if(closest.Distance != INFINITY) { pix.Color
}
}
Rendering — Spatial Acceleration Structures 3

¥

Spatial Aliasing

Source: renderstuff.com/

1>

Those are your dad’s pixels!

b)
\
Rendering — Spatial Acceleration Structures 4 ﬁ

http://renderstuff.com/

Supersampling TU

m Instead of a single ray through each pixel, use multiple ,samples”

O
O

Pixel with sampling positions

O o0

Sampled colours

Average = displayed colour

Rendering — Spatial Acceleration Structures 5

Supersampling

Source: renderstuff.com/

Antialiased

o
\
Rendering — Spatial Acceleration Structures 6 ﬁ

http://renderstuff.com/

Updated Render Loop m

pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

for(int s = @; s < NUM_SAMPLES; s++)
{
SampleInfo sInfo = drawSample();
Ray ray = rayThroughSample(cam, sInfo.Location);
for (Triangle& tri : triangles)
{
Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY)
{
RGBColor sample = computeColor(closest);

pix.Color += filter(sInfo.Filter, RGBWColor(sample, 1));
}

}

pix.Color /= pixColor.w;

Rendering — Spatial Acceleration Structures

Updated Render Loop m

pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

for(int s = @; s < NUM_SAMPLES; s++)

{

}

Rendering — Spatial Acceleration Structures 8

SampleInfo sInfo = drawSample();

Ray ray = rayThroughSample(cam, sInFo.Location);F_—~\\\\\\\\\\‘____

for (Triangle& tri : triangles) Sampllng
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

Color and Light

}

Rendering Equation
if(closest.Distance != INFINITY)

{

RGBColor sample = computeColor(closest);

/ Filtering
pix.Color += filter(sInfo.Filter, RGBWColor(sample, 1));

} / —— Sample Integration
pix.Color /= pixColor.w; «

o ST

Render Loop Run Time TU

m Let's look at the basic runtime (single sample per pixel)

void render(Camera cam)

{
for(Pixel& pix : pixels)
{
for (Triangle& tri : triangles)
{
}
}
}

Rendering — Spatial Acceleration Structures 9

Render Loop Run Time TU

m Let's look at the basic runtime (single sample per pixel)

void render(Camera cam)

{
for(Pixel& pix : pixels) &N
{
for (Triangle& tri : triangles) € M
{
}
}
}

m Thisis O(N - M), but even worse, it's Q(N - M)

Rendering — Spatial Acceleration Structures 10

Is That Actually a Problem? m

= Run time complexity quickly What if this thing had 1B

becomes a limiting factor triangles and your ray tracer just
walked through all of them?

m High-quality scenes can have several
million triangles per object

m Current screens and displays
are moving towards
4k resolution A _

Rendering — Spatial Acceleration Structures 11

U AFISE £ TTve.

< S AT s W -) - ”" -)" "7":‘.'\‘ "
I Amazon Lumberyard “Bistro i ‘g’“f !Si. et
P B

| 3,780,244 triangles i | T
| 1200x675 pixels A ;f -
¢ R
A% . U . " =
3 trillion ray/triangle " B ‘."‘44 ———
intersection tests? 9"

At 10M per second, one shot “*
~ will take ~4 days. —

y» Good luck with your movie! ®

\ <
-

3 Mo

’

R L & 2 L
S < D Nl ”

— J3

%

Picture provide through Creative Commons CC-BY.

| a9

What can we do about it?

m For rendering, we will want to learn to run before we can walk

m Find ways to speed up the basic loop for visibility resolution

m Enter “spatial acceleration structures”

m Essentially, pre-process the scene geometry into a structure that
reduces expected traversal time to something more reasonable

Rendering — Spatial Acceleration Structures 13

Spatial Acceleration Structures

none none none abysmal

Rendering — Spatial Acceleration Structures 14

Speeding Up Intersection Tests m

m Consider a group of triangles

m Which ones should we test?

Rendering — Spatial Acceleration Structures 15

Regular Grids TU

m Overlay scene with regular grid

m Sort triangles into cells

m Traverse cells and test
against their contents

A/

Rendering — Spatial Acceleration Structures

Regular Grids TU

m Overlay scene with regular grid

m Sort triangles into cells

m Traverse cells and test
against their contents -

4"

Rendering — Spatial Acceleration Structures

Regular Grids TU

m Overlay scene with regular grid

m Sort triangles into cells

m Traverse cells and test
against their contents e

4"

Rendering — Spatial Acceleration Structures

Regular Grids m

m Geometry is usually not uniform ‘ B§
[N

m Comes in clusters (buildings, 74 LA;

characters, vegetation...)

N

Rendering — Spatial Acceleration Structures 19

Regular Grids TU

m Geometry is usually not uniform

m Comes in clusters (buildings,
characters, vegetation...)

m Almost all triangles in one cell!
Hitting this cell will be costly!

N

Rendering — Spatial Acceleration Structures 20

Regular Grids m

m Geometry is usually not uniform ‘

m Comes in clusters (buildings, 4
characters, vegetation...)

O
P
D
O

et

cC ro I |
S—EeH—WH e

N

m Using a finer grid works

N

Rendering — Spatial Acceleration Structures 21

Regular Grids

m Geometry is usually not uniform

m Comes in clusters (buildings,
characters, vegetation...)

O
P
D
O

et

cC ro I |
S—EeH—WH e

N

m Using a finer grid works, but
most of its cells are unused!

N L
\
Rendering — Spatial Acceleration Structures 22 ﬁ

N
p

Spatial Acceleration Structures

Structure Memory Building Time (Expected)
Consumption Traversal Time

none none none abysmal

Regular Grid low — high low uniform scene: ok
(resolution) otherwise: bad

Rendering — Spatial Acceleration Structures 23

Quadtrees and Octrees m

m Start with scene bounds, do
finer subdivisions only if needed

m Define parameters Sy, 45, Niear

m Recursively split bounds into
quadrants (2D) or octants (3D)

m Stop after S,,,,, subdivisions or P
. : =7
if no cell has > Ni,, ¢ triangles

Rendering — Spatial Acceleration Structures 24

Quad and Octrees: Nigqr = 4

m Start with scene bounds, do
finer subdivisions only if needed

m Define parameters Sy, 45, Niear

m Recursively split bounds into
quadrants (2D) or octants (3D)

m Stop after S,,,,, subdivisions or
if no cell has > Ni,, ¢ triangles

Rendering — Spatial Acceleration Structures 25

=

Quad and Octrees: Nigqr = 4

m Start with scene bounds, do
finer subdivisions only if needed

m Define parameters Sy, 45, Niear

=
N

m Recursively split bounds into
quadrants (2D) or octants (3D)

m Stop after S,,,,, subdivisions or
if no cell has > Ni,, ¢ triangles

Rendering — Spatial Acceleration Structures 26

N

Quad and Octrees: Nigqr = 4

SCEY

Rendering — Spatial Acceleration Structures

Quad and Octrees: Nigqr = 4

Rendering — Spatial Acceleration Structures

Quad and Octrees: Nigqr = 4

Quad and Octrees: Nigqr = 4

Quad and Octrees: Nigqr = 4

Quad and Octrees m

m Triangles may not be contained
within a quadrant or octant

m Triangles must be referenced in
all overlapping cells or split at
the border into smaller ones

Rendering — Spatial Acceleration Structures 32

Quad and Octrees

m Triangles may not be contained
within a quadrant or octant

m Triangles must be referenced in
all overlapping cells or split at
the border into smaller ones

m Can drastically increase
memory consumption!

Rendering — Spatial Acceleration Structures 33

Spatial Acceleration Structures

Structure Memory Building Time (Expected)
Consumption Traversal Time

none none none abysmal

Reqular Grid low — high low uniform scene: ok
(resolution) otherwise: bad

Quadtree/Octree low — high low good

(overlap/uniformity)

Rendering — Spatial Acceleration Structures 34

BSP Trees & K-d Trees m

m Binary Space Partition Tree
m Recursive split via hyperplanes

m Left/right child nodes treat
objects in each half-space

m Splits can be arbitrary!

Rendering — Spatial Acceleration Structures

=

35

BSP Trees & K-d Trees, Nigqr = 4

m Binary Space Partition Tree
m Recursive split via hyperplanes

m Left/right child nodes treat
objects in each half-space

m Splits can be arbitrary!

Rendering — Spatial Acceleration Structures

N

36

BSP Trees & K-d Trees, Nigqr = 4

m Binary Space Partition Tree
m Recursive split via hyperplanes

m Left/right child nodes treat
objects in each half-space

m Splits can be arbitrary!

Rendering — Spatial Acceleration Structures

37

BSP Trees & K-d Trees, Nigqr = 4

m Binary Space Partition Tree
m Recursive split via hyperplanes

m Left/right child nodes treat
objects in each half-space

m Splits can be arbitrary!

Rendering — Spatial Acceleration Structures 38

BSP Trees & K-d Trees M

m Binary Space Partition Tree
m Recursive split via hyperplanes

m Left/right child nodes treat
objects in each half-space

m Splits can be arbitrary!

m K-dimensional (K-d) Tree

m Every hyperplane must be
perpendicular to a base axis

m Limits search space for splits

Rendering — Spatial Acceleration Structures

=

39

BSP Trees & K-d Trees, Nigqr = 4

m Binary Space Partition Tree
m Recursive split via hyperplanes

m Left/right child nodes treat
objects in each half-space

m Splits can be arbitrary!

m K-dimensional (K-d) Tree

m Every hyperplane must be
perpendicular to a base axis

m Limits search space for splits

Rendering — Spatial Acceleration Structures

~

LY
[

VAN

V

N

ha [

40

BSP Trees & K-d Trees, Nigqr = 4

m Binary Space Partition Tree
m Recursive split via hyperplanes

m Left/right child nodes treat
objects in each half-space

m Splits can be arbitrary!

m K-dimensional (K-d) Tree

m Every hyperplane must be
perpendicular to a base axis

m Limits search space for splits

Rendering — Spatial Acceleration Structures

N

41

BSP Trees & K-d Trees, Nigqr = 4

m Binary Space Partition Tree
m Recursive split via hyperplanes

m Left/right child nodes treat
objects in each half-space

m Splits can be arbitrary!

m K-dimensional (K-d) Tree

m Every hyperplane must be
perpendicular to a base axis

m Limits search space for splits

Rendering — Spatial Acceleration Structures

N

42

Spatial Acceleration Structures

Structure Memory Building Time (Expected)
Consumption Traversal Time

none

Regular Grid

Quadtree/Octree

K-d Tree

Rendering — Spatial Acceleration Structures

none none

low — high low
(resolution)

low — high low
(overlap/uniformity)

low — high low — high
(overlap)

43

abysmal
uniform scene: ok
otherwise: bad

good

good — excellent

¥

Bounding Volumes m

m Find enclosing (“conservative”) volumes that are easier to test

m Ideally: tight, but easy to check for intersection with ray

m Common choices:
m Bounding Spheres

m Bounding Boxes ’

m Axis-aligned (AABB) ,
m Oriented (OBB)

m Saves on computational effort if reject

Rendering — Spatial Acceleration Structures 44

Axis-Aligned Bounding Boxes (AABBs)

m AABBs are defined by their two extrema (min/max)

. (xmax’ y max’ Zmax)

m Linear run time to compute — (Max(x,x,x,),

max(ye.y;.y,),

m Iterate over all vertices max(z,z,,2,))

m Keep min/max values for
each dimension

m Done!

(xmiw y min’ Zmin) .

= (Min(xy,x;,x,),

min(yy,y,,:),
min(zyz,,2,))

Rendering — Spatial Acceleration Structures 45

Merging AABBs m

m Find the AABB that encloses multiple, smaller AABBs

m Operates only on
extrema of each
smaller AABB

m Merging process
IS commutative

Rendering — Spatial Acceleration Structures

(x

max_a Y max_a@ <

max_a)

(xmin_b’ Y min_b Zmi

(xmax_b’ Y max_b zmax_b)

1_b)

(xmfn_a’ y min_a <

mm_a)

(xmfn: YVmin Zmin) = (ﬂ’lin(xmgn_wxmm_b),

min O’min_a:y min_b) ’

46

min (Z min_a Zmin_b))

® (xmaxx YVmax Zmax)

- (max (xmax_a’xmax_b) ’
max(y max_a’y max_b))
max(z max @ Z max_b))

Bounding Spheres

= Bounding spheres need a center ¢ and a radius r

m For ¢, can pick the mean vertex bounding
. i
position or center of AABB sphere

m Once center is chosen, find vertex
position U,,,, farthest from it

mr= |E_ﬁmax|

Rendering — Spatial Acceleration Structures 47

How to Use Bounding Volumes

m Can also be applied to entire objects

m Reject entire object if volume is not hit pounding
sphere

m Good start, but what if...
...scene is not partitioned into objects?

...0bjects are extremely large (terrain)?
...0bjects are extremely detailed (characters)?

...there are millions of objects with ~ 2 triangles each (leaves)?

1 <1,
\
Rendering — Spatial Acceleration Structures 48 ﬁ

Bounding Volume Hierarchy (BVH)

m Each node of the hierarchy has its own bounding volume

m Every node can be
m Aninner node: references child nodes
m A leaf node: references triangles

m Each node’s bounding volume is a
subset of its parent’s bounding volume
(i.e., child nodes are spatially contained by their parents)

Rendering — Spatial Acceleration Structures 49

Bounding Volume Hierarchy (BVH)

m The final hierarchy is (again) a tree structure with N leaf nodes

A A

m Leaf nodes can be B C C
m Individual triangles @O ¥® i% = % x

m Clusters (e.g., < 10A)

Source: Schreiberx, Wikipedia “Bounding Volume Hier

m Total number of nodes for a binary tree: 2N — 1
m If balanced, it takes ~ log N steps to reach a leaf from the root
m If trees have more than 2 branches, they require fewer nodes

Rendering — Spatial Acceleration Structures 51

What makes BVHs special?

m Important feature: bounding volumes can overlap!

m No duplicate references or \
split triangles necessary!

m Implicitly limits the amount
of memory required

Rendering — Spatial Acceleration Structures 52

m Generating BVH and tree
for input triangle geometry

m CPU: usually top-down
GPU: usually bottom-up

m From here on out, we will
consider box BVHs only

=

Rendering — Spatial Acceleration Structures 53

BVH Building, Top-Down m

m Define N, for leaves

m For each node, do the following:

m Compute bounding box that
fully encloses triangles & store

Holds < N, r triangles? Stop.
Else, split into child groups

Make one new node per group
Set them as children of current

Repeat with child nodes

Rendering — Spatial Acceleration Structures

54

=

13

BVH Building, Top-Down, Ny, r = 4

m Define N, for leaves

m For each node, do the following:

m Compute bounding box that
fully encloses triangles & store

Holds < N, r triangles? Stop.
Else, split into child groups

Make one new node per group
Set them as children of current

Repeat with child nodes

Rendering — Spatial Acceleration Structures

=

55

BVH Building, Top-Down, Ny, r = 4

m Define N, for leaves

m For each node, do the following:

m Compute bounding box that
fully encloses triangles & store

Holds < N, r triangles? Stop.
Else, split into child groups

Make one new node per group
Set them as children of current

Repeat with child nodes

Rendering — Spatial Acceleration Structures

N

56

BVH Building, Top-Down, Ny, r = 4

Rendering — Spatial Acceleration Structures 57

BVH Building, Top-Down, Ny, r = 4

N
"

Rendering — Spatial Acceleration Structures 58

BVH Building, Top-Down, Ny, r = 4

Rendering — Spatial Acceleration Structures 59

How to split a node? m

m Which axes to consider for building bounding boxes/splitting?
m Basis vectors (1,0,0), (0,1,0), (0,0,1) only
m Oriented basis vectors only

m Arbitrary

m Where to split?
m Spatial median
m Object median
m Something more elaborate...

Rendering — Spatial Acceleration Structures 60

How to split a node? m

m Which axes to consider for building bounding boxes/splitting?
m Basis vectors (1,0,0),(0,1,0),(0,0,1) only

m Oriented basis vectors only

m Arbitrary ‘
Algorithms exist (e.g. “separating axis theorem”),

but usually very slow!

m Where to split?
m Spatial median
m Object median
m Something more elaborate...

Rendering — Spatial Acceleration Structures 61

Splitting at spatial median

m Pick the longest axis (X/Y/Z)
of current node bounds

m Find the midpoint on that axis

m Assign triangles to A/B based
on which side of the midpoint
each triangle’s centroid lies on

m Continue recursion with A/B

Rendering — Spatial Acceleration Structures

62

Splitting at spatial median

m Careful: can result in infinite recursion! VA
N
m All triangles are assigned again to N
one node, none in the other 7y
4
Q%
m Can guard against it in several ways [~ —
m Limit max. number of split attempts A
m Try other axes if one node is empty "
m Compute box over triangle centroids \

and split that on longest axis instead

Rendering — Spatial Acceleration Structures 63

Splitting at object median

m Pick an axis. Can try them all,
don’t pick the same every time

m Sort triangles according to their
centroid’s position on that axis

m Assign first half of the sorted
triangles to A, the second to B

m Continue recursion with A/B

Rendering — Spatial Acceleration Structures 64

BVH Traversal TV

0. Set t,,,;; = 0. Start at root node, return if it doesn’t intersect ray.
1. Process node if its closest intersection with ray is closer than t,,;;,,

2. Ifit’'s aninner node, run from 1. for child nodes that intersect ray
m Process the closest node first
m Keep others on stack to process further ones later (recursion works)

3. If it’s a leaf, check triangles and update t,,,;,, in case of closer hit

N3l
\
Rendering — Spatial Acceleration Structures 65 .

BVH Traversal Example m

1. Process node if its closest intersection with ray is closer than t,,,;,

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

1. Process node if its closest intersection with ray is closer than t,,,;,

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

2. Ifit’s an inner node, run from 1. for child nodes that intersect ray
m Process the closest node first
m Keep others on stack

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

1. Process node if its closest intersection with ray is closer than t,,,;,

Rendering — Spatial Acceleration Structures 69

BVH Traversal Example m

1. Process node if its closest intersection with ray is closer than t,,,;,

Rendering — Spatial Acceleration Structures 70

BVH Traversal Example m

3. Ifit’s a leaf, check triangles and update t,,,;,, in case of closer hit

Rendering — Spatial Acceleration Structures 71

BVH Traversal Example m

3. Ifit’s a leaf, check triangles and update t,,,;,, in case of closer hit

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

2. Ifit’s an inner node, run from 1. for child nodes that intersect ray
[]

O process further ones later

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

1. Process node if its closest intersection with ray is closer than t,,,;,

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

1. Process node if its closest intersection with ray is closer than t,,,;,

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

3. Ifit’s a leaf, check triangles and update t,,;;, in case of closer hit (@)

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

3. Ifit’s a leaf, check triangles and update t,,;;, in case of closer hit (@)

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

3. Ifit’s a leaf, check triangles and update t,,;;, in case of closer hit (@)

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

3. Ifit’s a leaf, check triangles and update t,,;;, in case of closer hit (@)

Rendering — Spatial Acceleration Structures

BVH Traversal Example m

3. Ifit’s a leaf, check triangles and update t,,;;, in case of closer hit (@)

Rendering — Spatial Acceleration Structures

The Surface Area Heuristic [1]

m Simple, but powerful heuristic for choosing splits

m Created with traversal in mind, based on the following ideas:
m Assume rays are uniformly distributed in space
m Probability of a ray hitting a node is proportional to its surface area
m Cost of traversing it depends on the number of triangles in its leaves

m Hence, avoid large nodes with many triangles, because:
m They have a tendency to get checked often
m Getting a definite result (reject or closest hit) is likely to be expensive

‘)
\
Rendering — Spatial Acceleration Structures 81 ﬁ

Applying the Surface Area Heuristic

Goal: To split a node, find the hyperplane b that minimizes
f(b) = LSA(b) - L(b) + RSA(b) - (N — L(b)), where

LSA(b)/RSA(D) are the surface area of the nodes that enclose the
triangles whose centroid is on the “left”/“right” of the split plane b

- L(b) is the number of primitives on the “left” of b

- N is the total number of primitives in the node

Rendering — Spatial Acceleration Structures 82

The Sweep SAH BVH

m We want to constrain the search space for a good split

m Pick a set of axes to test (e.g., 3D basis vectors X/Y/Z)

m When sp
m Sorta
m Findt

itting a node with N triangles, for each axis
| triangles by their centroid’s position on that axis

ne index i that minimizes

f(@i) =LSA() -i+ RSA@) - (N —1i), where
- LSA(1) is the surface area of the AABB over sorted triangles [0, i)
- RSA(iQ) is the surface area of the AABB over sorted triangles [i, N)

m Select the axis and index i with the best f (i) for the split overall!

b |
\
Rendering — Spatial Acceleration Structures 83 ﬁ

Importance of Optimizing Splits

m Important trade-off: building time vs. traversal time

m Given the same tracing/traversal code, the quality of a BVH tree
may have a big impact on performance!

m Can be as high as 2x compared to naive splitting

m Benefits depend on the parameters of your rendering scenario
m How big is your scene and how are triangles distributed?
m How long will your BVH be valid?
m What are the quality requirements for your images?

Rendering — Spatial Acceleration Structures 84

Evaluation of Combined Building + Traversal [2]

Efficiency measured as a function of TOTAL
WALLCLOCK TIME PER RAY, taking into account

MRays/s relative to maximum achievable ray tracing

performance of SweepSAH
both BVH construction and actual tracing.
140%
- SweepSAH
120% it
100% LBVH
——HLBVH
80%
~— GridSAH
60%

i ~——Kensler
40% ~— Bittner
11, A S B A . S R N— SBVH

e Our+split
0% = (30%)
1M 10M 100M 1G 10G 100G 1T
Number of rays
Check out the paper this comparison came from https://users.aalto.fi/~ailatl/publications/karras2013hpg_paper.pdf ‘ N

Rendering — Spatial Acceleration Structures 85

https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Evaluation of Combined Building + Traversal [2]

Efficiency measured as a function of TOTAL

If you don’t have too * WALLCLOCK TIME PER RAY, taking into account
many rays to trace, it both BVH construction and actual tracing.
probably pays offto —— SweepSAH
conStrUCt BVH rea"y tesehsssssssssssssssssnssnses :..o::::....'............o' Our

quickly, even if tracing

LBVH
wasn’t as fast per ray
— HLBVH
80%
~— GridSAH
- Kensler
—— Bittner
...... SBVH
........... e «e+=+« Our+split
(30%)
100M 1G 10G 100G d s
Number of rays
Check out the paper this comparison came from https://users.aalto.fi/~ailat1l/publications/karras2013hpg_paper.pdf ‘ : .
Rendering — Spatial Acceleration Structures 86 \#

https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Evaluation of Combined Building + Traversal [2]

-~
Check out the paper this comparison came from https://users.aalto.fi/~ailatl/publications/karras2013hpg_paper.pdf ‘ N
\&

Rendering — Spatial Acceleration Structures 87

Efficiency measured as a function of TOTAL
WALLCLOCK TIME PER RAY, taking into account
both BVH construction and actual tracing.

After some point a faster =
but slower-to-build BVH’s
increased tracing speed

starts to pay off

— SweepSAH

100%
80%
GridSAH
60% ~ Kensler
40% - Bittner
20% SBVH
........ -=+==+ Our+split
0% (30%)
M 10M 100M 1G 10G 100G 1T

Number of rays

https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Spatial Acceleration Structures

Structure Memory Building Time (Expected)
Consumption Traversal Time

none

Regular Grid

Quadtree/Octree

K-d Tree

BVH

Rendering — Spatial Acceleration Structures

none none

low — high low
(resolution)

low — high low
(overlap/uniformity)

low — high low — high
(overlap)

low low — high

88

abysmal

uniform scene: ok
otherwise: bad
good

good — excellent

good — excellent

BVH Building Hints Ty

m For each split, sort the node’s portion of the triangle list L in-place
m When constructing child nodes, pass them L and start/end indices

B Primitive that lands in left child

Bl Primitive that lands in right child

Rendering — Spatial Acceleration Structures 89

BVH Building Hints Ty

m For each split, sort the node’s portion of the triangle list L in-place

m When constructing child nodes, pass them L and start/end indices

List L

~_

Rendering — Spatial Acceleration Structures 20

BVH Building Hints

m For each split, sort the node’s portion of the triangle list L in-place

m When constructing child nodes, pass them L and start/end indices

List L Construct(root, L, 0, numElements(L))
0 \M N
Construct(root.leftChild, Construct(root.rightChild,
L,0,S) L,S,N)
0 S N

‘ \"-
Rendering — Spatial Acceleration Structures 91 .

SAH Coding Hints

= Don’t loop over triangles at each i to get LSA(i) and RSA(i)!

m Precompute them once per node and axis instead

m Create two 0-volume bounding boxes BB;, BBp
m Allocate N+1 entries for LSA/RSA, set LSA(0) = RSA(N) =0
m lterate i overrange |1, N|, for each i:
= Merge BB; with the AABB of sorted triangle with index (i — 1)
m Store surface area of BB; as value for LSA(i)
= Merge BBy with the AABB of sorted triangle with index (N — i)
m Store surface area of BBy as value for RSA(N — i)

Rendering — Spatial Acceleration Structures 92

BVH Building Hints (C++)

m Consider using stdlib container (e.g., vector)
m Try to avoid dynamic memory allocation
m 2N — 1is an upper bound for the total number of nodes you need
m std::sort(<first>, <last>, <predicate>)
m std::nth_element(<first>, <nth>, <last>, <predicate>)
m Can be used for splitting if you don‘t need exact sorting

m Reorders the N-sized vector such that:
m n smallest elements are on the left

m N — n biggest are on the right
m Faster than sorting!

‘ b
\
Rendering — Spatial Acceleration Structures 93 ﬁ

BVH vs K-d Tree vs Others

m Each have their specializations, strengths and weaknesses

m E.g., K-d Trees with ropes do not require a stack for traversal [5]

m Which acceleration structure is the best is contentious

m Currently, BVHs are extremely widespread and well-understood

Rendering — Spatial Acceleration Structures 94

State-of-the-Art Variants and Trends

m Higher child counts (>2) per node, mixed nodes (children + triangles)
m Actually DO split triangles sometimes to get maximal performance

m Build BVHs bottom-up in parallel on the GPU [3]

m In animated scenes, reuse BVHs, update those parts that change

m Actually use built-in traversal logic of GPU hardware (NVIDIA RTX!)

N3l
\
Rendering — Spatial Acceleration Structures 95 .

‘ b
\
Rendering — Spatial Acceleration Structures 96 .

References and Further Reading

Interesting topics: BVHs for animation, LBVH, SIMD/packet/stackless traversal, Turing RTX architecture

[1] Heuristics for Ray Tracing Using Space Subdivision, J. David MacDonald and Kellogg S. Booth, 1990

[2] On Quality Metrics of Bounding Volume Hierarchies, Timo Aila, Tero Karras, and Samuli Laine, 2013

[3] Parallel BVH generation on the GPU, Tero Karras and Timo Aila, 2012

[4] Fast Parallel Construction of High-Quality Bounding Volume Hierarchies, Tero Karras and Timo Aila, 2013

[5] Stackless KD-Tree Traversal for High Performance GPU Ray Tracing, Stefan Popov, Johannes Ginther,
Hans-Peter Seidel and Philipp Slusallek, 2007

[6] Realtime Ray Tracing and Interactive Global lllumination, Phd Thesis, Ingo Wald, 2004

[7] Bonsai: Rapid Bounding Volume Hierarchy Generation using Mini Trees, P. Ganestam, R. Barringer, M.
Doggett, and T. Akenine-Mdller, 2015

