
VU Rendering SS 2012
Unit 2: Rendering Theory

-  Rendering Equation
-  Potential Equation
-  Basic Strategies for solving the RE and the PE
-  A taxonomy of rendering algorithms
-  Overall goal: to present a manageable mathematical

framework into which all common rendering algorithms
fit in one way or another

Overview

Math

Unit 2 – Part 1

-  Kajia’s 1986 version of the RE as commonly found in
literature

-  Fredholm Integro-di!erential equation
-  Surface (area) formalism ! integrates over visible

surfaces
-  Completely describes the problem of image

synthesis ! this is what we need to write a
rendering algorithm

Rendering Equation

-  Directional formalism ! integrates over entire
hemisphere

-  Change in notation (g " h, rho " fr,
epsilon " Le, I " L)

-  The term for the direct influence of surface emission
is moved outside the integral

RE – Alternative Form

Alternative RE Geometry

Both formalism have the same result

Short Form of the RE

-  Given the previous change in notation, we can
introduce an integral operator T as

 which enables us to write a shorthand version of the
 RE as

-  Analytical solutions are usually impossible

The two sides of
the equation are
coupled

Potential Equation

-  The PE describes the problem of light transport from
the viewpoint of the emitter:

-  T’ is the adjoint operator of T from the RE
-  The PE can also be written in short form as

Potential Equation Geometry

RE & PE Symmetry

-  The rendering equation sees the problem of light
transport from the viewpoint of the receiver

-  The potential equation is the adjoint problem; it
models the situation from the viewpoint of the
emitter

-  Both equations are of similar type and have to be
approached in similar ways

-  The PE is introduced for reasons of symmetry and to
explain certain methods

-  We will need both later

RE & PE Di!erence

-  The key di!erence between the two equations is
what is being computed during their evaluation:

-  Rendering Equation
-  Individual radiance values are computed for each

viewing ray
-  Immediately useful for rendering

-  Potential Equation
-  Computes the „radiance state“ for entire scenes
-  Results have to be stored and evaluated later

Contractivity

-  For all physically plausible environments, the integral
operators T and T’ are contractive, which means that

-  Repeated applications of T or T’ yield successively
smaller results because all realistic surface
reflectances are < 1!

-  Scenes with highly specular surfaces are less
contractive than di!use environments, i.e. iterative
solutions take longer to converge

-  Local
illumination
models:
Coupling is
ignored – no
recursion

-  Recursive ray
tracing: Certain
„easy“ types of
coupling are
followed
(specular &
transmission)

-  Global
illumination
methods: Full
treatment of RE
coupling

Solution Technique Classification

Direct illumination alone Direct and indirec illumination

Practical Example

Global Illumination Solution Strategies

-  Inversion
-  Not used in practice

-  Expansion
-  Almost exclusively used by stochastic techniques

(ray tracers are an exception)
-  Iteration
-  Both stochastic and deterministic

(i.e. finite element) approaches exist

Example

-  Simple equation

-  Ignoring the coupling (“direct illumination only”)

-  Approximation
!

x = 0.1x +1.8

!

x = 0.1x +1.8 "1.8

!

x = 0.1x *1.8 +1.9 =1.98

Inversion

-  Groups terms that contain the unknown on the same
side of the equation

-  Then a formal inversion operation is applied

-  Example equation

x = 0.9!1 *1.8 = 2

!

x = 0.1x +1.8

Inversion in Practice

-  T is infinite dimensional and cannot be inverted in
closed form

-  Problem can be approximated by a finite element
approach, which eventually yields a system of linear
equations, which then have to be inverted

-  No longer used due to cubic time complexity and
numerical instability

-  Not dependent on contractivity of T!

Gathering Expansion

-  Recursive substitution of L:

-  f repeated n times, a Neumann series results:

-  Example equation

 ! ! ...

!

x = 0.1x +1.8

!

x0 =1.8

!

x1 =1.98

!

x2 =1.998

!

xi =1.8 + 0.1*1.8 + 0.12 *1.8 + ...+ 0.1i+1 * x

-  If T is a contraction (and in rendering it is) then

 which leads us to

 as a solution for the rendering problem.

Gathering Expansion

-  We replaced an intractable equation with an infinite
series of integrals with successively higher
dimensionality...

-  Did we gain anything through this?
-  Obviously, otherwise we would not have

bothered! ;-)
-  The series of integrals corresponds to the levels in a

recursive gathering algorithm!

How is this useful?

The recursive substitution corresponds to recursion
levels during a ray-casting process which originates
from the eye

Gathering Expansion Geometry

The recursive substitution corresponds to recursion levels during a ray
shooting process which originates at the emitter

Shooting Expansion

Expansion Steps

-  At each recursion level, we have to integrate over the
entire hemisphere for each sample point

-  This quadrature has to be performed numerically for
all but trivial scenes

-  The integral is high-dimensional since it includes the
recursion from there onwards!

Numerical Quadrature

-  A finite number of samples is taken from the
integration domain

-  The integrand is evaluated for these samples
-  The numerical result of the integral is computed as a

weighted sum of these result values

!

I = f (z)dz " f (zi) # w(zi)
i=1

N

$
V
%

-  Brick rule, Simpson‘s rule - simple and e!ective for
low-dimensional integrands

-  E!ort needed for given accuracy rises exponentially
with dimension of the integrand!

-  Monte Carlo integration is the only viable method of
performing this quadrature in practice

Classical Numerical Integration

Monte Carlo Quadrature

-  Converts the calculation of an integral to an
equivalent expected value problem

-  Random sampling of the integrand used as a basis
for determining the result

-  Number of samples needed for a given dimension of
the integrand is not dependent on the dimension!

-  For gathering algorithms: Random number = ray
direction

!

E f (z)[] " ˆ f =
1
N

f (zi)
i=1

N

#

Rays (Samples) per Pixel

Reference Increasing samples / pixels

Choosing Sampling Points for MC

-  Two strategies are possible:
-  Importance sampling tries to find the best sample

points by trying to guess the correct distribution
-  Stratification aims at using samples which cover

the integrand very evenly

-  Discrepancy is the measure of sampling quality for
sequences of sample points
-  Regular grids have very high discrepancy!

Quasi Monte Carlo

-  True random numbers have a too high discrepancy
for good behaviour in MC integration algorithms

-  Deterministic low-discrepancy sequences are used
instead:
-  Halton sequences for arbitrary numbers of points
-  Hammersley sequences if the number of needed

points is known in advance
-  TMS nets for 2D integrands

Quasi Monte Carlo Example

Random number comparisson

Halton vs. Hammersley

Random Values

Halton Sequence

QMC Issues

-  QMC sequences provide substantial performance
and quality gains for rendering applications

-  However, QMC generators are not drop-in
replacements for normal random generators like
rand()

-  For example, one must not use values from the same
sequence twice during one recursive descent into a
scene if Halton sequences are used

Random Number „Problems“

Expansion Disadvantages

-  Paths have to be independent, so no coherency
between them can be exploited

-  It requires the evaluation of very high dimensional
integrals
-  Either the walks are truncated (when they reach a

threshold), which introduces a bias
-  or they are stopped randomly at some level, which

reduces sampling of higher recursion levels (scenes
with mirrors!)

Path Termination

-  How many integrands are evaluated?
-  Fractional propagation / attenuation
-  The absorbed energy is subtracted at every step,

and the path is terminated once it carries less
energy than a certain threshold

-  Biased, but more intuitive
-  Russian Roulette
-  Random termination of entire ray according to

propagation probability
-  No bias, less intutitive

RR, 1000 samples FT, 100 samples

Russian Roulette vs. Fractional
Termination

Expansion Advantages

-  No temporary representations of the complete
radiance function are required
for gathering expansion (storage space & accuracy
issues!)

-  For shooting expansions the storage techniques can
be comparatively flexible

-  Algorithms can work on the original geometry
without tesselations

-  Walks are independent and can be parallelised

Iteration

-  A solution of the RE is a fixed point of

-  If T is contractive, this will converge from any initial
distribution L0

-  Finite element techniques (which introduce a
discretisation error) have to be used

-  Example equation:

!

x = 0.1x +1.8

!

x0 =1.8

!

x1 =1.98

!

x2 =1.998

!

xn = 0.1xn"1 +1.8

Iteration Disadvantages

-  Requires object tesselation and finite element
representation
-  Geometric accuracy and coherence is lost
-  Substantial storage requirements even for

moderately complex scenes
-  Accuracy of high frequency shadows, reflections and

caustics is problematical
-  A solution is computed even for parts of the scene

which are invisible

Iteration Advantages

-  Coherence can be exploited well
-  Approximating functions Ln are viewpoint-

independent: potential advantage for animations
-  Provides implicit smoothing through discretisation,

i.e. more visually pleasing images than noisy
expansion

-  More robust for highly reflective environments

Theory
-  Rendering Equation

-  Solutions Strategies
-  Inversion
-  Expansion
-  Iteration

-  Monte Carlo Sampling
-  Evaluate Integrand

with finite number
of samples

Practice
-  Light propagation in

scene

-  Recursion

-  Choose random direction
-  Take more than one ray

per pixel
-  Weight rays

Last Unit

!

I = f (z)dz " f (zi) # w(zi)
i=1

N

$
V
%

Gathering Expansion Algorithms in Comparison

Unit 2 – Part 2

Random Walk Algorithms

-  Algorithms can be categorized according to their
basic strategy:

-  Gathering type RW
-  Shooting type RW
-  Bi-directional algorithms
-  Global methods

-  Starts at the eye
-  Gathers the

emission of the
visited points

-  Di!erences in
Trace() function
determine actual
algorithm type

Gathering Type Random Walk

for each pixel do!

!colour = 0!

!for i = 0 to N do!

!!ray = random ray through pixel!

!!samplecolour = c·Trace(ray)!

!!colour += samplecolour / N!

!endfor!

endfor!

Gathering Type Random Walk

Heckbert‘s Taxonomy

-  Heckbert‘s taxonomy provides further information
-  Used to categorize rendering algorithms
-  E is the eye
-  L is the lightsource
-  D is a non-ideal reflection or refraction
-  S is an ideal reflection or refraction
-  * is the sign of iteration
-  [] represents optionality
-  | means selection

Global Illumination Scene

Heckbert Notation

Gathering Type Algorithms

-  Ray casting – LDE
-  Ray casting is the act of intersecting a single ray

with a scene
-  Ray tracing – L[D]S*E
-  Ray tracing is a photorealistic rendering algorithm

-  Raytracers – as well as more sophisticated renderers
– use raycasters!

-  Distribution raytracing – L[D|S]*E
-  Path tracing – L[D|S]*E

-  Sometimes referred
to
as First Hit
Raytracing or
Nonrecursive
Raytracing

-  Possible to
implement as real
time renderer

-  Potentially more
e"cient than
OpenGL for highly
complex scenes
(>10M polygons)

Raycasting – LDE

Trace(ray)!

!hit = FirstIntersect(ray)!

!if no intersection!

!!return backgroundColour!

!else return!

!!emission(@hit,-ray.dir) +!

!!directLighting(@hit,-ray.dir)!

Raycasting

-  Based on ray casting
-  Certain limited types

of recursion possible
(e.g. glossiness
threshold)

-  GI also possible
-  Available in commercial

products (e.g. Modo,
Maxwell, …)

-  Usually only a few FPS,
but in simple scenes
realtime

Realtime RT and GI

-  “Classical”
raytracing as
discussed in CG1

-  Also known as
Whitted Raytracing
(after Turner
Whitted,
who first published
it)

-  This is a hybrid
algorithm:
-  Recursion is

evaluate for
perfect mirrors

-  Coupling is
ignored
otherwise

Raytracing – L[D]S*E

Raytracing – Step 1

-  Visibility calculation
-  Object intersection

Raytracing – Step 2

 Shading based on
 direction to lightsource

Raytracing – Step 3

Multiple lightsources are
taken into account

Raytracing – Step 4

Determining
shadows

Raytracing – Step 5

Handling of
reflections

Raytracing – Step 6

Shading of
reflections

Raytracing – Step 7

Sum of
Influences

Trace(ray)!
!hit = FirstIntersect(ray)!
!if no intersection!
!!return backgroundColour!
!colour = emission(@hit,-ray.dir)!
!! + directLighting(@hit,-ray.dir)!
!if kr > 0 then!
!!colour += kr * Trace(reflectedRay)!
 !if kt > 0 then!
!!colour += kt * Trace(transmittedRay)!
!return colour!
!

Raytracing

Global Illumination Example

Global Illumination Example

Global Illumination

Raytraced Scene

Raytraced Scene with Ambient Term

-  A single path is traced through the scene
-  Versions without (left) and with (right) intermediate

light source evaluation exist

Path Tracing – L[D|S]*E

-  FAST!
-  Simple to code,

since all you ever
do is to follow a
path until you either
-  Hit a light source or
-  Exceed some

recursion
threshold

-  Drawback: does not
work for small light
sources

Simple Path Tracing

Trace(ray)!
!hit = FirstIntersect(ray)!
!if no intersection return
backgroundColour!
!colour = emission(@hit,-ray.dir)!
!! + directLighting(@hit,-ray.dir)!
!p = BRDFSampling(-ray.dir,normal,newRay)!
!if p > 0 then return colour!
!colour += Trace(newRay)!
!!* weight(newRay.dir,normal,-ray.dir)/ p!
!return colour!
!

Path Tracing

 Reference Simple Path Tracer 150 samples / pixel

Problem: Hitting the Light Source

-  Include sampling of
the light sources
-  „Multiple importance

sampling“
-  Key problem:
-  Correct weighting

of the two samples
-  Solved in 1995 by Veach

and Guibas
-  No real follow-up work

yet

Improved Path Tracing

Estimating Incident Light

-  Hemispherical Integration (RE v2)
-  Done by simple path tracer
-  No 1/r2 sample weighting
-  No partitioning of integrand

-  Direct Lightsource Sampling (RE v1)
-  Partitions integrand into direct and indirect

illumination
-  1/r2 sample weighting
-  Potentially much more e"cient than HI in some

cases

Rendering Equation

-  Area Formalism

-  Hemispherical formalism

Hemispherical Formalism Surface Area Formalism

Hemispherical vs. Surface Area (Again)

http://www.cs.utexas.edu/~mjk/teaching/cs354_s12/25globalillum.pdf

Path Tracing: Sample Weighting

-  At each surface intersection, two possibilities to
continue the ray exist:
-  According to the BRDF
-  Through sampling of the lightsources

-  Both techniques have their merits depending on the
circumstances

-  BIG problem: knowing which one to choose requires
knowledge of the solution

Multiple Importance Sampling

Reason: 1/r2 decrease of
lightsource sample intensity!

Lightsource

BRDF vs. Lightsource Sampling

BRDF

Retains the worst properties of both :-)

Simple Averaging

BRDF Lights

Sample Weighting: Example

-  No simple
solution
is possible

-  Averaging is
sub-optimal

-  Programs use
a heuristic to
determine the
type
of sample to
prefer

-  Heuristic is
based on the
relative
sample
probabilities

Sample Weighting: Solutions

!

wi =
pi(x)
p j (x)

j
"

!

R = wA " A + wB " B

The Balance Heuristic

-  This is only used when both rays hit the
same light source - all other cases are
simply added!

-  Key idea: weigh each sample according to
its relative probability:

-  Weights sum to one - no energy is counted
twice!

R = wA1*A1 + wA2*A2

Multiple Importance Sampling

!

wA1 =
p1A1

p1A1 + p2A 2

Relative Sample Probabilities

-  Each ray (BRDF A1 and LS A2) has two pj:
-  p1 - the BRDF probability

(“how probable is it that this ray gets created as a
BRDF sample”)

-  p2 - the light source sample probability
 (“how probable is it that this ray gets created as a
light source sample”)

-  Formulas for each of the two can be found in
literature

-  Each ray uses its „own“ p for its w, e.g. p1 for the
BRDF ray:

-  Lambertian surface

-  Phong-type specular lobe

-  Mirror

!

p1(") =
cos#
$

!

p1(") =
n +1
2#

cosn$

!

p1(") = #(" $"r)

Sample p1 Formulae

!

p2(") =
1
Se

x # y 2

cos$

Area Light Source Probability p2

-  Dependent on:
-  absolute area Se
-  squared distance between sample and surface

point
-  cosine of angle

Green = evaluation according to RE v. 1 (solid angle
sampling)
Blue = evaluation according to RE v. 2 (lightsource
sampling

Scenario 1

Green = evaluation according to RE v. 1 (solid angle
sampling)
Blue = evaluation according to RE v. 2 (lightsource
sampling

Scenario 2

Green = evaluation according to RE v. 1 (solid angle
sampling)
Blue = evaluation according to RE v. 2 (lightsource
sampling

Scenario 3

Weighted BRDF vs. Light Source

 BRDF lightsource

Not perfect, but a big improvement

Weighted Addition

Path Tracing

-  Pro:
-  Simple!
-  Converges to true solution
-  Better convergence than Distribution RT

-  Con:
-  Fairly bad convergence characteristics for arbitrary

scenes, especially if the lightsources are small

-  Starts at the
lightsources

-  Spreads the
emission to the
visited points,
which are then
projected into
image space

-  Di!erences in
Shoot() function
determine actual
algorithm type

Shooting Type Random Walk

clearImage!

for i = 0 to N do!

 ray = random ray from light!

 with selection probability p_e!

 power = L_e * cos(phi)!

 / (P_e * N) !!

 Shoot(ray,power)!

endfor!

Shooting Type Random Walk

-  LS*DE
-  Also known

as photon
tracing

-  Inverse
of raytracing

-  Unuseable
convergence speed

-  Limited to RT-type
images

Forward Raytracing

Shoot(ray,power)!
 hit = FirstIntersect(ray)!
 if no intersection then return!
 if hit is visible from pixel p then!
 colour[p] += emission(eyedirection)!
 + power * brdf(@hit,ray.dir,eyedir) * c!
 endif!
 if kr>0 then Shoot(reflectedRay,kr*power)!
 if kt>0 then Shoot(transmittedRay,kt*power)!
 return!
!

Forward Raytracing

L[D|S]*E
Could also be
called forward
path tracing
Inverse
of path tracing
High variance
Converges to true solution
Unuseable in practice

Light Tracing

Shoot(ray,pow)!
 hit = FirstIntersect(ray)!
 if no intersection then return!
 if hit is visible from pixel p then!
 colour[p] += emission(eyedirection)!
 + pow * brdf(@hit,ray.dir,eyedir) * c!
 endif!
 p = BRDFSampling(-
ray.dir,normal,newRay.dir)!
 if p = 0 then return!
 newPow = pow*w(-ray.dir,normal,newRay.dir)/
p!
 Shoot(newRay,newPow)!
 return!

Light Tracing

Gathering vs. Shooting Algorithms

-  Dual Algorithms, solve same problem
-  Which performs better?

-  Depends on several factors
-  Image size vs. scene size
-  Surface types
-  Light sources

Bidirectional Random Walk Algorithms

-  Attempt to overcome the di"culties of gathering
and shooting by combining them

-  Two algorithms exist:
-  Bidirectional path tracing
-  Metropolis light transport

Bidirectional Path Tracing

-  Similar to Path or Light Tracing, except:
-  Two paths are randomly cast, one from the eye,

and one from one of the lightsources
-  To convert a shooting type walk to a gathering

type walk the radiance has to be multiplied by

-  In one version, all mutual inter-connections are
evaluated, in the other just the last one

-  Both paths are eventually stopped when below a
certain importance threshold, or russian roulette is
applied

Bi-directional Path Tracing Concept

Full Bi-directional Path Tracing

Path Tracing

(9 samples per
pixel)

Light tracing (9
sampels per
pixel)

Bidirectional path
tracing (4
samples per
pixell)

Comparison

Same computation time

Typical BPT Scene

BPT vs. PT

BPT Sample Weighting

Less Usefull for Caustics...

Metropolis Light Transport

-  Bi-directional tracing until a useful path is found
(costly & rare)

-  One then attempts to change the found path „a little
bit“ in order to (hopefully) gain more useful paths

-  Problem: doing this without breaking the stochastic
simulation

-  Metropolis sampling

-  Bidirectional Mutations: Changes in path length –
vertices are added or deleted

-  Perturbations: Directions are slightly altered at
certain „neuralgic“ points in a path

Changing a Path

Algorithms Comparison

Path Mutations

Perturbations

Metropolis Example #1

Metropolis Example #2 a

Metropolis Example #2 b

Metropolis: Useability

-  Pro:
-  Handles „di"cult“ situations well

-  Con:
-  Startup bias makes it less than optimal for „normal“

scenes
-  Very di"cult to implement

Iteration and Storage-Based Shooting Algorithms in
Comparison

Unit 2 – Part 3

Iteration

-  A solution of the RE is a fixed point of

-  If T is contractive, this will converge from any initial
distribution L0

-  In order to store the needed intermediate
approximating functions Ln, finite element
techniques (which introduce a discretisation error)
have to be used

Iteration Disadvantages

-  Requires object tesselation and finite element
representation
-  Geometric accuracy and coherency is lost
-  Substantial storage requirements even for

moderately complex scenes
-  Accuracy of high frequency shadows, reflections and

caustics is problematical
-  A solution is computed even for parts of the scene

which are invisible

Iteration Advantages

-  Coherency can be better exploited
-  Approximating functions Ln are viewpoint-

independent: potential advantage for animations
-  Provides implicit smoothing through discretization,

i.e. more visually pleasing images than noisy
expansion

-  More robust for highly reflective environments

Types of Storage-Based Methods

-  Classical Radiosity - Iteration
-  Deterministic
-  Form-factor based
-  Discretization of scene into patches

-  Stochastic Approaches - Expansion (!)
-  Photon tracing

Cornell (1982)

Cornell Box #1

Cornell Box #2

Radiosity Factory (1988)

The Rendering Equation

-  Radiosity B: rate at which energy leaves a surface
(energy per unit area per unit time)

-  Full Rendering Equation:

-  Di!use interaction only:

!

B = E + kd " I(x) dx
#

$

The Radiosity Equation

-  Di!use Interaction, version 2 (radiosity integral
equation):

-  The same after discretisation:

!

B(x) = E(x) + "(x) B(x ')
S# G(x,x ')dA'

!

Bi = Ei + kdi " Fij " B j
j=1

n

#

!

Fij = (1
Ai

cos("xy,Nx)cos(#"xy ,Ny)
$rxy

2 dAydAx)V (x,y)
Sj
%

Si
%

The Radiosity Problem

!

Bi " kdi # Fij # B j = E j
j=1, j$ i

n

%

!

1 "kd1F12 ! "kd1F1n
"kd 2F21 1 ! "kd 2F2n
" " # "

"kdnFn1 "kdnFn2 ! 1

$

%
%
%
%

&

'

(
(
(
(

)

B1
B2
"
Bn

$

%
%
%
%

&

'

(
(
(
(

=

E1
E2

"
En

$

%
%
%
%

&

'

(
(
(
(

-  Discretisation of input
geometry

-  Computation of the
form factors for every
pair of patches

-  Numerical solution of
the radiosity system

-  Display of the solution

-  Problems
-  Scene discretisation
-  Form factor

computation

Components of the Problem

-  Illumination information
has to be stored on
patches

-  Deterministic radiosity
algorithms have at least
O(n2) complexity

-  More patches are
expensive, so a better
representation on fewer
patches can improve
the method

Illumination Representation

-  Scene has to be meshed
into a set of well-
formed polygons
-  A priori: Meshing

before radiosity
solution is invoked

-  A posteriori: Mesh is
refined as the solution
progresses

-  No odd (oblique)
shapes

-  No T-vertices
-  Mesh boundaries in

appropriate places are
desirable

Mesh Topology

T-Vertices and Interpolation

T-Vertices

Mesh Transitions

Shadow Leak

Meshing artefacts

Light Leak

Adaptive Meshing

Discontinuity Meshing

Incremental Mesh Construction

Dincontinuity Meshing vs. Reg. Subdevision

Standard Solution

Discomesh Example

Disco Meshing

Hierarchical Radiosity

-  Raising the number of patches
-  increases computation time significantly
-  increases the accuracy of the solution not nearly as

much

-  Solution: only compute those interactions that
matter

-  Problem: adapt radiosity solver
-  HR looks directly on the form factors

-  Start with n
patches (initial
mesh)

-  Recursively apply
-  Approximate

form factors with
quick estimate

-  Subdivide if FF
fall below a
threshold

Build Hierarchical Subdivision

Hierarchical Radiosity

Hierarchical Radiosity Push

Hierarchical Radiosity Pull

Disco Meshing vs. Hierarchical Radiosity

-  A geometric property
-  Encode the energy

transfer between
patches

-  For a scene with n
patches, this amounts
to a matrix with n x n
elements

-  Calculation time-
intensive, but has to be
performed only once
per geometric setup

-  Independent of
illumination

Form Factors FIJ

Form Factor Geometry

Form Factor Calculations

Nusselts Analogon

Form Factor Relationship

Hemicube

Raytraced Form Factors

Monte Carlo Form Factors

-  Various iterative
methods exist, e.g.:
-  Jacobi iteration
-  Gauss-Seidel iteration
-  Southwell relaxation

-  These correspond to
di!erent light
propagation strategies:
-  shooting vs.
-  gathering

Solving the Radiosity Matrix

Gathering vs. Shooting

-  The mesh can directly
be used for
walkthroughs or ray
tracing

-  The radiosity
information can be used
in a multi-pass renderer

-  The mesh has to be
interpolated for display
purposes (potential
problems with disco
meshing and other
extreme tessellations)

Rendering the Solution

Progressive Refinement

Limitations & Scope

-  Only polygonal scenes
-  Only di!use materials
-  Extensions for mirrors possible
-  Newer, stochastic methods are state of research
-  Form factor Radiosity is state of the art in

commercial products

Photon Density Estimation

-  Physically plausible simulation of light transport
-  Photon paths are traced through the scene and their

interaction with surfaces is recorded
-  Di!erent storage structures:
-  Photon maps
-  Lightmaps

-  Normally used in a multipass renderer

Photon Tracing

Illumination Reconstruction

-  Highly e"cient for
caustics

-  Always used as a stage
in two- or multipass
renderers

-  On absorption, photons
are stored in kD-Trees
and used for various
purposes:
-  Caustic Photon Map
-  Global Photon Map
-  Shadow Photon Map

Photon Maps

-  Many photons are
emitted towards
specular objects

-  Stored upon
intersection with di!use
surfaces

-  Visualized directly by
using nearest n photons
for illumination
reconstruction

Caustic Photon Map

Visualisation of a Caustic Map

1 Bonce 2 Bonces

3 Bonces 4 Bonces

-  Photons are emitted
towards all objects in a
scene

-  Used as a rough
approximation of light
transport in a scene

-  Not visualized directly

Global Photon Map

Shadow Photon Map

-  Rays with origin at lightsource are traced through
entire scene

-  First intersection is recorded as „light“, subsequent
hits as „shadow“

-  Used for improvement of raytracing pass

Photon Map Example #1

Photon Map Example #2

-  Slow
-  Memory consumption
-  Illumination

reconstruction depends
on distance

-  Biased

Photon Maps - Disadvantages

Irradiance Cache #1

Irradiance Cache #2

Irradiance Cache #2

Comparison

-  2D “light textures” on objects
-  Each texture element averages the energy of all

photon hits it receives
-  Higher order representations possible
-  Area of all texels has to be known and has to be

computed as a preprocessing step
-  Interpolation over texels after tracing pass

Lightmaps

Lightmaps

Photon Tracing vs. Complexity

-  Memory consumption: texels on all primitives are
wasteful

-  Preprocessing: area computation for large numbers
of texels takes too long

-  Execution time: far too many photons have to be
cast for a stable estimate

-  Impossible to attach to implicit objects, e.g. L-
systems

Complex Scenes: Points of Failure

-  Memory consumption explodes

-  Execution time is unacceptable
-  Set-up times are too high
-  Convergence is too slow for Monte Carlo methods

-  Ray-based methods converge too slowly if number
of primitives is large

-  Fredholm Integro-di!erential equation
-  Completely describes light transport in a scene
-  Usually impossible to solve analytically (infinite

cascade)
-  Most solution strategies take only certain aspects

into account

Summary

-  Geometry: partially (polygonisation!)
-  Emission: yes (if implemented)
-  Integral: no
-  Surfaces: rudimentary
-  Recursion: no

Solving the RE: Scanline Rendering

OpenGL Scanline Rendering

-  Geometry: yes, accurately
-  Emission: yes
-  Integral: no
-  Surfaces: partially / rudimentary
-  Recursion: partially (for mirrors and transparent

surfaces)

Solving the RE: Ray Tracing

Raytraced Scene

-  Geometry: yes (sort of – polygonisation!)
-  Emission: yes
-  Integral: partially (only di!use surfaces)
-  Surfaces: same as integral
-  Recursion: yes

Solving the RE: Radiosity

Radiosity

-  Geometry: yes
-  Emission: yes
-  Integral: partially (from lightsource – yes, direct

viewing – ?)
-  Surfaces: same as integral
-  Recursion: yes

Solving the RE: Photon Tracing

Photon Tracing

-  Geometry: yes
-  Emission: yes
-  Integral: yes
-  Surfaces: yes
-  Recursion: yes

Solving the RE: PathTracing

Path Tracing (Metropolis)

Rendering VO Unit

The End
Thank you for your attention!

