
VU Rendering SS 2012 
Unit 2: Rendering Theory 
 



-  Rendering Equation 
-  Potential Equation 
-  Basic Strategies for solving the RE and the PE 
-  A taxonomy of rendering algorithms 
-  Overall goal: to present a manageable mathematical 

framework into which all common rendering algorithms 
fit in one way or another 

Overview 



 
 
 

 
Math 

Unit 2 – Part 1 



-  Kajia’s 1986 version of the RE as commonly found in 
literature 

-  Fredholm Integro-di!erential equation 
-  Surface (area) formalism ! integrates over visible 

surfaces 
-  Completely describes the problem of image 

synthesis ! this is what we need to write a 
rendering algorithm 

Rendering Equation 



-  Directional formalism ! integrates over entire 
hemisphere 

-  Change in notation (g " h, rho " fr,  
epsilon " Le, I " L) 

-  The term for the direct influence of surface emission 
is moved outside the integral 

RE – Alternative Form 



Alternative RE Geometry 



Both formalism have the same result 



Short Form of the RE 

-  Given the previous change in notation, we can 
introduce an integral operator T as 

 which enables us to write a shorthand version of the 
 RE as 

-  Analytical solutions are usually impossible 

The two sides of 
the equation are 
coupled 



Potential Equation 

-  The PE describes the problem of light transport from 
the viewpoint of the emitter: 

-  T’ is the adjoint operator of T from the RE 
-  The PE can also be written in short form as 



Potential Equation Geometry 



RE & PE Symmetry 

-  The rendering equation sees the problem of light 
transport from the viewpoint of the  receiver 

-  The potential equation is the adjoint problem; it 
models the situation from the viewpoint of the 
emitter 

-  Both equations are of similar type and have to be 
approached in similar ways 

-  The PE is introduced for reasons of symmetry and to 
explain certain methods 

-  We will need both later 



RE & PE Di!erence 

-  The key di!erence between the two equations is 
what is being computed during their evaluation: 

-  Rendering Equation 
-  Individual radiance values are computed for each 

viewing ray 
-  Immediately useful for rendering 

-  Potential Equation 
-  Computes the „radiance state“ for entire scenes 
-  Results have to be stored and evaluated later 



Contractivity 

-  For all physically plausible environments, the integral 
operators T and T’ are contractive, which means that 

-  Repeated applications of T or T’ yield successively 
smaller results because all realistic surface 
reflectances are < 1!  

-  Scenes with highly specular surfaces are less 
contractive than di!use environments, i.e. iterative 
solutions take longer to converge 



-  Local 
illumination 
models: 
Coupling is 
ignored – no 
recursion 

-  Recursive ray 
tracing: Certain 
„easy“ types of 
coupling are 
followed 
(specular & 
transmission) 

-  Global 
illumination 
methods: Full 
treatment of RE 
coupling 

Solution Technique Classification 



Direct illumination alone Direct and indirec illumination 

Practical Example 



Global Illumination Solution Strategies 

-  Inversion 
-  Not used in practice 

-  Expansion 
-  Almost exclusively used by stochastic techniques 

(ray tracers are an exception) 
-  Iteration 
-  Both stochastic and deterministic 

(i.e. finite element) approaches exist 



Example 

-  Simple equation 
 

-  Ignoring the coupling (“direct illumination only”) 

-  Approximation 
! 

x = 0.1x +1.8

! 

x = 0.1x +1.8 "1.8

! 

x = 0.1x *1.8 +1.9 =1.98



Inversion 

-  Groups terms that contain the unknown on the same 
side of the equation 

-  Then a formal inversion operation is applied 

-  Example equation 

x = 0.9!1 *1.8 = 2

! 

x = 0.1x +1.8



Inversion in Practice 

-  T is infinite dimensional and cannot be inverted in 
closed form 

-  Problem can be approximated by a finite element 
approach, which eventually yields a system of linear 
equations, which then have to be inverted 

-  No longer used due to cubic time complexity and 
numerical instability 

-  Not dependent on contractivity of T! 



Gathering Expansion 

-  Recursive substitution of L: 

 

 

-  f repeated n times, a Neumann series results: 

-  Example equation  

 
 

            !                   !                       ... 

! 

x = 0.1x +1.8

! 

x0 =1.8

! 

x1 =1.98

! 

x2 =1.998

! 

xi =1.8 + 0.1*1.8 + 0.12 *1.8 + ...+ 0.1i+1 * x



-  If T is a contraction (and in rendering it is) then 

 which leads us to 

  
 as a solution for the rendering problem. 

Gathering Expansion 



-  We replaced an intractable equation with an infinite 
series of integrals with successively higher 
dimensionality... 

-  Did we gain anything through this? 
-  Obviously, otherwise we would not have 

bothered! ;-) 
-  The series of integrals corresponds to the levels in a 

recursive gathering algorithm! 

How is this useful? 



The recursive substitution corresponds to recursion 
levels during a ray-casting process which originates 
from the eye 

Gathering Expansion Geometry 



The recursive substitution corresponds to recursion levels during a ray 
shooting process which originates at the emitter 

Shooting Expansion 



Expansion Steps 

-  At each recursion level, we have to integrate over the 
entire hemisphere for each sample point 

-  This quadrature has to be performed numerically for 
all but trivial scenes 

-  The integral is high-dimensional since it includes the 
recursion from there onwards! 



Numerical Quadrature 

-  A finite number of samples is taken from the 
integration domain 

-  The integrand is evaluated for these samples 
-  The numerical result of the integral is computed as a 

weighted sum of these result values 

! 

I = f (z)dz " f (zi) # w(zi)
i=1

N

$
V
%



-  Brick rule, Simpson‘s rule - simple and e!ective for 
low-dimensional integrands 

-  E!ort needed for given accuracy rises exponentially 
with dimension of the integrand! 

-  Monte Carlo integration is the only viable method of 
performing this quadrature in practice 

Classical Numerical Integration 



Monte Carlo Quadrature 

-  Converts the calculation of an integral to an 
equivalent expected value problem 

-  Random sampling of the integrand used as a basis 
for determining the result 

-  Number of samples needed for a given dimension of 
the integrand is not dependent on the dimension! 

-  For gathering algorithms: Random number = ray 
direction 

! 

E f (z)[ ] " ˆ f =
1
N

f (zi)
i=1

N

#



Rays (Samples) per Pixel 

Reference Increasing samples / pixels 



Choosing Sampling Points for MC 

-  Two strategies are possible: 
-  Importance sampling tries to find the best sample 

points by trying to guess the correct distribution 
-  Stratification aims at using samples which cover 

the integrand very evenly 

-  Discrepancy is the measure of sampling quality for 
sequences of sample points 
-  Regular grids have very high discrepancy! 



Quasi Monte Carlo 

-  True random numbers have a too high discrepancy 
for good behaviour in MC integration algorithms 

-  Deterministic low-discrepancy sequences are used 
instead: 
-  Halton sequences for arbitrary numbers of points 
-  Hammersley sequences if the number of needed 

points is known in advance 
-  TMS nets for 2D integrands 



Quasi Monte Carlo Example 



Random number comparisson 

Halton vs. Hammersley 



Random Values 



Halton Sequence 



QMC Issues 

-  QMC sequences provide substantial performance 
and quality gains for rendering applications 

-  However, QMC generators are not drop-in 
replacements for normal random generators like 
rand() 

-  For example, one must not use values from the same 
sequence twice during one recursive descent into a 
scene if Halton sequences are used 



Random Number „Problems“ 



Expansion Disadvantages 

-  Paths have to be independent, so no coherency 
between them can be exploited 

-  It requires the evaluation of very high dimensional 
integrals 
-  Either the walks are truncated (when they reach a 

threshold), which introduces a bias 
-  or they are stopped randomly at some level, which 

reduces sampling of higher recursion levels (scenes 
with mirrors!) 

 



Path Termination  

-  How many integrands are evaluated? 
-  Fractional propagation / attenuation 
-  The absorbed energy is subtracted at every step, 

and the path is terminated once it carries less 
energy than a certain threshold 

-  Biased, but more intuitive 
-  Russian Roulette 
-  Random termination of entire ray according to 

propagation probability 
-  No bias, less intutitive 



RR, 1000 samples FT, 100 samples 

Russian Roulette vs. Fractional 
Termination 



Expansion Advantages 

-  No temporary representations of the complete 
radiance function are required 
for gathering expansion (storage space & accuracy 
issues!) 

-  For shooting expansions the storage techniques can 
be comparatively flexible 

-  Algorithms can work on the original geometry 
without tesselations 

-  Walks are independent and can be parallelised 



Iteration 

-  A solution of the RE is a fixed point of 

-  If T is contractive, this will converge from any initial 
distribution L0 

-  Finite element techniques (which introduce a 
discretisation error) have to be used 

-  Example equation:  

! 

x = 0.1x +1.8

! 

x0 =1.8

! 

x1 =1.98

! 

x2 =1.998

! 

xn = 0.1xn"1 +1.8



Iteration Disadvantages 

-  Requires object tesselation and finite element 
representation 
-  Geometric accuracy and coherence is lost 
-  Substantial storage requirements even for 

moderately complex scenes 
-  Accuracy of high frequency shadows, reflections and 

caustics is problematical 
-  A solution is computed even for parts of the scene 

which are invisible 



Iteration Advantages 

-  Coherence can be exploited well 
-  Approximating functions Ln are viewpoint-

independent: potential advantage for animations 
-  Provides implicit smoothing through discretisation, 

i.e. more visually pleasing images than noisy 
expansion 

-  More robust for highly reflective environments 



Theory  
-  Rendering Equation 

-  Solutions Strategies 
-  Inversion 
-  Expansion 
-  Iteration 

-  Monte Carlo Sampling 
-  Evaluate Integrand 

with finite number 
of samples 

Practice 
-  Light propagation in 

scene  

-  Recursion 

-  Choose random direction 
-  Take more than one ray 

per pixel 
-  Weight rays 

Last Unit 

! 

I = f (z)dz " f (zi) # w(zi)
i=1

N

$
V
%



 
 
 
 

Gathering Expansion Algorithms in Comparison 

Unit 2 – Part 2 



Random Walk Algorithms 

-  Algorithms can be categorized according to their 
basic strategy: 

-  Gathering type RW 
-  Shooting type RW 
-  Bi-directional algorithms 
-  Global methods 

 
 



-  Starts at the eye 
-  Gathers the 

emission of the 
visited points 

-  Di!erences in 
Trace() function 
determine actual  
algorithm type 

Gathering Type Random Walk 



for each pixel do!

!colour = 0!

!for i = 0 to N do!

!!ray = random ray through pixel!

!!samplecolour = c·Trace(ray)!

!!colour += samplecolour / N!

!endfor!

endfor!

Gathering Type Random Walk 



Heckbert‘s Taxonomy 

-  Heckbert‘s taxonomy provides further information 
-  Used to categorize rendering algorithms 
-  E is the eye 
-  L is the lightsource 
-  D is a non-ideal reflection or refraction 
-  S is an ideal reflection or refraction 
-  * is the sign of iteration 
-  [ ] represents optionality 
-  | means selection 



Global Illumination Scene 



Heckbert Notation 



Gathering Type Algorithms 

-  Ray casting – LDE 
-  Ray casting is the act of intersecting a single ray 

with a scene 
-  Ray tracing – L[D]S*E 
-  Ray tracing is a photorealistic rendering algorithm 

-  Raytracers – as well as more sophisticated renderers 
– use raycasters! 

-  Distribution raytracing – L[D|S]*E 
-  Path tracing – L[D|S]*E 



-  Sometimes referred 
to 
as First Hit 
Raytracing or 
Nonrecursive 
Raytracing 

-  Possible to 
implement as real 
time renderer 

-  Potentially more 
e"cient than 
OpenGL for highly 
complex scenes 
(>10M polygons) 

Raycasting – LDE 



Trace(ray)!

!hit = FirstIntersect(ray)!

!if no intersection!

!!return backgroundColour!

!else return!

!!emission(@hit,-ray.dir) +!

!!directLighting(@hit,-ray.dir)!

Raycasting 



-  Based on ray casting 
-  Certain limited types 

of recursion possible 
(e.g. glossiness 
threshold) 

-  GI also possible 
-  Available in commercial 

products (e.g. Modo, 
Maxwell, …)  

-  Usually only a few FPS, 
but in simple scenes 
realtime 

Realtime RT and GI 



-  “Classical” 
raytracing as 
discussed in CG1 

-  Also known as  
Whitted Raytracing 
(after Turner 
Whitted, 
who first published 
it) 

-  This is a hybrid 
algorithm: 
-  Recursion is 

evaluate for 
perfect mirrors 

-  Coupling is 
ignored 
otherwise  

 

Raytracing – L[D]S*E 



Raytracing – Step 1 

-   Visibility calculation 
-   Object intersection 



Raytracing – Step 2 

 Shading based on  
 direction to lightsource 



Raytracing – Step 3 

Multiple lightsources are 
taken into account 



Raytracing – Step 4 

Determining 
shadows 



Raytracing – Step 5 

Handling of 
reflections 



Raytracing – Step 6 

Shading of 
reflections 



Raytracing – Step 7 

Sum of 
Influences 



Trace(ray)!
!hit = FirstIntersect(ray)!
!if no intersection!
!!return backgroundColour!
!colour =   emission(@hit,-ray.dir)!
!!      + directLighting(@hit,-ray.dir)!
!if kr > 0 then!
!!colour += kr * Trace(reflectedRay)!
 !if kt > 0 then!
!!colour += kt * Trace(transmittedRay)!
!return colour!
!

Raytracing 



Global Illumination Example 



Global Illumination Example 



Global Illumination 



Raytraced Scene 



Raytraced Scene with Ambient Term 



-  A single path is traced through the scene 
-  Versions without (left) and with (right) intermediate 

light source evaluation exist 

Path Tracing – L[D|S]*E 



-  FAST! 
-  Simple to code,  

since all you ever 
do is to follow a  
path until you either 
-  Hit a light source or 
-  Exceed some 

recursion  
threshold 

-  Drawback: does not 
work for small light 
sources 

Simple Path Tracing 



Trace(ray)!
!hit = FirstIntersect(ray)!
!if no intersection return 
backgroundColour!
!colour =   emission(@hit,-ray.dir)!
!!      + directLighting(@hit,-ray.dir)!
!p = BRDFSampling(-ray.dir,normal,newRay)!
!if p > 0 then return colour!
!colour += Trace(newRay)!
!!* weight(newRay.dir,normal,-ray.dir)/ p!
!return colour!
!

Path Tracing 



   Reference                 Simple Path Tracer 150 samples / pixel 

Problem: Hitting the Light Source 



-  Include sampling of  
the light sources 
-  „Multiple importance  

sampling“ 
-  Key problem: 
-  Correct weighting 

of the two samples 
-  Solved in 1995 by Veach 

and Guibas 
-  No real follow-up work 

yet 

Improved Path Tracing 



Estimating Incident Light 

-  Hemispherical Integration (RE v2) 
-  Done by simple path tracer 
-  No 1/r2 sample weighting 
-  No partitioning of integrand 

-  Direct Lightsource Sampling (RE v1) 
-  Partitions integrand into direct and indirect 

illumination 
-  1/r2 sample weighting 
-  Potentially much more e"cient than HI in some 

cases 



Rendering Equation 

-  Area Formalism 

 

-  Hemispherical formalism 



Hemispherical Formalism Surface Area Formalism 

Hemispherical vs. Surface Area (Again) 

http://www.cs.utexas.edu/~mjk/teaching/cs354_s12/25globalillum.pdf 



Path Tracing: Sample Weighting 

-  At each surface intersection, two possibilities to 
continue the ray exist: 
-  According to the BRDF 
-  Through sampling of the lightsources 

-  Both techniques have their merits depending on the 
circumstances 

-  BIG problem: knowing which one to choose requires 
knowledge of the solution 



Multiple Importance Sampling 



Reason: 1/r2 decrease of  
lightsource sample intensity! 

Lightsource 

BRDF vs. Lightsource Sampling 

BRDF 



Retains the worst properties of both :-) 

Simple Averaging 



BRDF Lights 

Sample Weighting: Example 



-  No simple 
solution 
is possible 

-  Averaging is 
sub-optimal 

-  Programs use 
a heuristic to  
determine the 
type  
of sample to 
prefer 

-  Heuristic is 
based on the 
relative 
sample 
probabilities 

Sample Weighting: Solutions 



! 

wi =
pi(x)
p j (x)

j
"

! 

R = wA " A + wB " B

The Balance Heuristic 

-  This is only used when both rays hit the 
same light source - all other cases are 
simply added!  

-  Key idea: weigh each sample according to 
its relative probability: 

-  Weights sum to one - no energy is counted 
twice! 



R = wA1*A1 + wA2*A2 

Multiple Importance Sampling 



! 

wA1 =
p1A1

p1A1 + p2A 2

Relative Sample Probabilities 

-  Each ray (BRDF A1 and LS A2) has two pj: 
-  p1 - the BRDF probability 

(“how probable is it that this ray gets created as a 
BRDF sample”) 

-  p2 - the light source sample probability 
 (“how probable is it that this ray gets created as a 
light source sample”) 

-  Formulas for each of the two can be found in 
literature 

-  Each ray uses its „own“ p for its w, e.g. p1 for the 
BRDF ray: 



-  Lambertian surface 

-  Phong-type specular lobe 

-  Mirror 

! 

p1(") =
cos#
$

! 

p1(") =
n +1
2#

cosn$

! 

p1(") = #(" $"r )

Sample p1 Formulae 



! 

p2(") =
1
Se

x # y 2

cos$

Area Light Source Probability p2 

-  Dependent on: 
-  absolute area Se 
-  squared distance between sample and surface 

point 
-  cosine of angle 



Green  = evaluation according to RE v. 1 (solid angle 
sampling) 
Blue  = evaluation according to RE v. 2 (lightsource 
sampling 

Scenario 1 



Green  = evaluation according to RE v. 1 (solid angle 
sampling) 
Blue  = evaluation according to RE v. 2 (lightsource 
sampling 

Scenario 2 



Green  = evaluation according to RE v. 1 (solid angle 
sampling) 
Blue  = evaluation according to RE v. 2 (lightsource 
sampling 

Scenario 3 



Weighted BRDF vs. Light Source 

   BRDF                 lightsource 



Not perfect, but a big improvement 

Weighted Addition 



Path Tracing 

-  Pro: 
-  Simple! 
-  Converges to true solution 
-  Better convergence than Distribution RT 

-  Con: 
-  Fairly bad convergence characteristics for arbitrary 

scenes, especially if the lightsources are small 



-  Starts at the 
lightsources 

-  Spreads the 
emission to the 
visited points, 
which are then 
projected into 
image space 

-  Di!erences in 
Shoot() function 
determine actual 
algorithm type 

Shooting Type Random Walk 



clearImage!

for i = 0 to N do!

 ray = random ray from light!

   with selection probability p_e!

 power =   L_e * cos(phi)!

         / (P_e * N) !!

 Shoot(ray,power)!

endfor!

Shooting Type Random Walk 



-  LS*DE 
-  Also known 

as photon 
tracing 

-  Inverse 
of raytracing 

-  Unuseable  
convergence speed 

-  Limited to RT-type 
images 

Forward Raytracing 



Shoot(ray,power)!
 hit = FirstIntersect(ray)!
 if no intersection then return!
 if hit is visible from pixel p then!
  colour[p] += emission(eyedirection)!
    + power * brdf(@hit,ray.dir,eyedir) * c!
 endif!
 if kr>0 then Shoot(reflectedRay,kr*power)!
 if kt>0 then Shoot(transmittedRay,kt*power)!
 return!
!

Forward Raytracing 



L[D|S]*E 
Could also be 
called forward 
path tracing 
Inverse 
of path tracing 
High variance 
Converges to true solution 
Unuseable in practice 

Light Tracing 



Shoot(ray,pow)!
 hit = FirstIntersect(ray)!
 if no intersection then return!
 if hit is visible from pixel p then!
  colour[p] += emission(eyedirection)!
    + pow * brdf(@hit,ray.dir,eyedir) * c!
 endif!
 p = BRDFSampling(-
ray.dir,normal,newRay.dir)!
 if p = 0 then return!
 newPow = pow*w(-ray.dir,normal,newRay.dir)/
p!
 Shoot(newRay,newPow)!
 return!

Light Tracing 



Gathering vs. Shooting Algorithms 

-  Dual Algorithms, solve same problem 
-  Which performs better? 

-  Depends on several factors 
-  Image size vs. scene size 
-  Surface types 
-  Light sources 



Bidirectional Random Walk Algorithms 

-  Attempt to overcome the di"culties of gathering 
and shooting by combining them 

-  Two algorithms exist: 
-  Bidirectional path tracing 
-  Metropolis light transport 



Bidirectional Path Tracing 

-  Similar to Path or Light Tracing, except: 
-  Two paths are randomly cast, one from the eye, 

and one from one of the lightsources 
-  To convert  a shooting type walk to a gathering 

type walk the radiance has to be multiplied by  

-  In one version, all mutual inter-connections are 
evaluated, in the other just the last one 

-  Both paths are eventually stopped when below a 
certain importance threshold, or russian roulette is 
applied 



 
 
 
 
 
 
 

Bi-directional Path Tracing Concept 



Full Bi-directional Path Tracing 



Path Tracing  
 
(9 samples per 
pixel) 
 
 
 

Light tracing (9 
sampels per 
pixel) 
 
 
 
 

Bidirectional path 
tracing (4 
samples per 
pixell) 

Comparison 

Same computation time 



Typical BPT Scene 



BPT vs. PT 



BPT Sample Weighting 



Less Usefull for Caustics... 



Metropolis Light Transport 

-  Bi-directional tracing until a useful path is found 
(costly & rare) 

-  One then attempts to change the found path „a little 
bit“ in order to (hopefully) gain more useful paths 

-  Problem: doing this without breaking the stochastic 
simulation 

-  Metropolis sampling 



-  Bidirectional Mutations: Changes in path length – 
vertices are added or deleted 

-  Perturbations: Directions are slightly altered at 
certain „neuralgic“ points in a path 

Changing a Path 



Algorithms Comparison 



Path Mutations 



Perturbations 



Metropolis Example #1 



Metropolis Example #2 a 



Metropolis Example #2 b 



Metropolis: Useability 

-  Pro: 
-  Handles „di"cult“ situations well 

-  Con: 
-  Startup bias makes it less than optimal for „normal“ 

scenes 
-  Very di"cult to implement 



 
 
 
 

Iteration and Storage-Based Shooting Algorithms in 
Comparison 

Unit 2 – Part 3 



Iteration 

-  A solution of the RE is a fixed point of 

-  If T is contractive, this will converge from any initial 
distribution L0 

-  In order to store the needed intermediate 
approximating functions Ln, finite element 
techniques (which introduce a discretisation error) 
have to be used 



Iteration Disadvantages 

-  Requires object tesselation and finite element 
representation 
-  Geometric accuracy and coherency is lost 
-  Substantial storage requirements even for 

moderately complex scenes 
-  Accuracy of high frequency shadows, reflections and 

caustics is problematical 
-  A solution is computed even for parts of the scene 

which are invisible 



Iteration Advantages 

-  Coherency can be better exploited 
-  Approximating functions Ln are viewpoint-

independent: potential advantage for animations 
-  Provides implicit smoothing through discretization, 

i.e. more visually pleasing images than noisy 
expansion 

-  More robust for highly reflective environments 



Types of Storage-Based Methods 

-  Classical Radiosity - Iteration 
-  Deterministic 
-  Form-factor based 
-  Discretization of scene into patches 

-  Stochastic Approaches - Expansion (!) 
-  Photon tracing 



Cornell (1982) 

Cornell Box #1 



Cornell Box #2 



Radiosity Factory (1988) 



The Rendering Equation 

-  Radiosity B: rate at which energy leaves a surface 
(energy per unit area per unit time) 

-  Full Rendering Equation: 

 
-  Di!use interaction only: 

! 

B = E + kd " I(x) dx
#

$



The Radiosity Equation 

-  Di!use Interaction, version 2 (radiosity integral 
equation): 
 
 
 

-  The same after discretisation: 

! 

B(x) = E(x) + "(x) B(x ')
S# G(x,x ')dA'

! 

Bi = Ei + kdi " Fij " B j
j=1

n

#

! 

Fij = ( 1
Ai

cos("xy,Nx )cos(#"xy ,Ny )
$rxy

2 dAydAx )V (x,y)
Sj
%

Si
%



The Radiosity Problem 

! 

Bi " kdi # Fij # B j = E j
j=1, j$ i

n

%

  

! 

1 "kd1F12 ! "kd1F1n
"kd 2F21 1 ! "kd 2F2n
" " # "

"kdnFn1 "kdnFn2 ! 1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

)

B1
B2
"
Bn

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

E1
E2

"
En

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 



-  Discretisation of input 
geometry 

-  Computation of the 
form factors for every 
pair of patches 

-  Numerical solution of 
the radiosity system 

-  Display of the solution 

-  Problems 
-  Scene discretisation 
-  Form factor 

computation 

Components of the Problem 



-  Illumination information 
has to be stored on 
patches 

-  Deterministic radiosity 
algorithms have at least 
O(n2) complexity 

-  More patches are 
expensive, so a better 
representation on fewer 
patches can improve 
the method 

Illumination Representation 



-  Scene has to be meshed 
into a set of well-
formed polygons  
-  A priori: Meshing 

before radiosity 
solution is invoked 

-  A posteriori: Mesh is 
refined as the solution 
progresses 

-  No odd (oblique) 
shapes 

-  No T-vertices 
-  Mesh boundaries in 

appropriate places are 
desirable 

Mesh Topology 



T-Vertices and Interpolation 

T-Vertices 



Mesh Transitions 



Shadow Leak 

Meshing artefacts 

Light Leak 



Adaptive Meshing 



Discontinuity Meshing 



Incremental Mesh Construction 



Dincontinuity Meshing vs. Reg. Subdevision 



Standard Solution 

Discomesh Example 

Disco Meshing 



Hierarchical Radiosity 

-  Raising the number of patches 
-  increases computation time significantly 
-  increases the accuracy of the solution not nearly as 

much 

-  Solution: only compute those interactions that 
matter  

-  Problem: adapt radiosity solver 
-  HR looks directly on the form factors 
  



-  Start with n 
patches (initial 
mesh) 

-  Recursively apply 
-  Approximate 

form factors with 
quick estimate 

-  Subdivide if FF 
fall below a 
threshold 

Build Hierarchical Subdivision 



Hierarchical Radiosity 



Hierarchical Radiosity Push 



Hierarchical Radiosity Pull 



Disco Meshing vs. Hierarchical Radiosity 



-  A geometric property 
-  Encode the energy 

transfer between 
patches 

-  For a scene with n 
patches, this amounts 
to a matrix with n x n 
elements 

-  Calculation time-
intensive, but has to be 
performed only once 
per geometric setup 

-  Independent of 
illumination 

Form Factors FIJ 



Form Factor Geometry 



Form Factor Calculations 



Nusselts Analogon 



Form Factor Relationship 



Hemicube 



Raytraced Form Factors 



Monte Carlo Form Factors 



-  Various iterative 
methods exist, e.g.: 
-  Jacobi iteration 
-  Gauss-Seidel iteration 
-  Southwell relaxation 

-  These correspond to 
di!erent light 
propagation strategies: 
-  shooting vs. 
-  gathering 

Solving the Radiosity Matrix 



Gathering vs. Shooting 



-  The mesh can directly 
be used for 
walkthroughs or ray 
tracing 

-  The radiosity 
information can be used 
in a multi-pass renderer 

-  The mesh has to be 
interpolated for display 
purposes (potential 
problems with disco 
meshing and other 
extreme tessellations) 

Rendering the Solution 



Progressive Refinement 



Limitations & Scope 

-  Only polygonal scenes 
-  Only di!use materials 
-  Extensions for mirrors possible 
-  Newer, stochastic methods are state of research 
-  Form factor Radiosity is state of the art in 

commercial products   



Photon Density Estimation 

-  Physically plausible simulation of light transport 
-  Photon paths are traced through the scene and their 

interaction with surfaces is recorded 
-  Di!erent storage structures: 
-  Photon maps 
-  Lightmaps 

-  Normally used in a multipass renderer 



Photon Tracing 



Illumination Reconstruction 



-  Highly e"cient for 
caustics 

-  Always used as a stage 
in two- or multipass 
renderers 

-  On absorption, photons 
are stored in kD-Trees 
and used for various 
purposes: 
-  Caustic Photon Map 
-  Global Photon Map 
-  Shadow Photon Map 

Photon Maps 



-  Many photons are 
emitted towards 
specular objects 

-  Stored upon 
intersection with di!use 
surfaces 

-  Visualized directly by 
using nearest n photons 
for illumination 
reconstruction 

Caustic Photon Map 



Visualisation of a Caustic Map 

1 Bonce 2 Bonces 

3 Bonces 4 Bonces 



-  Photons are emitted 
towards all objects in a 
scene 

-  Used as a rough 
approximation of light 
transport in a scene 

-  Not visualized directly 

Global Photon Map 



Shadow Photon Map  

-  Rays with origin at lightsource are traced through 
entire scene 

-  First intersection is recorded as „light“, subsequent 
hits as „shadow“ 

-  Used for improvement of raytracing pass 



Photon Map Example #1 



Photon Map Example #2 



-  Slow 
-  Memory consumption 
-  Illumination 

reconstruction depends 
on distance 

-  Biased 

Photon Maps - Disadvantages 



Irradiance Cache #1 



Irradiance Cache #2 



Irradiance Cache #2 



Comparison 



-  2D “light textures” on objects 
-  Each texture element averages the energy of all 

photon hits it receives 
-  Higher order representations possible 
-  Area of all texels has to be known and has to be 

computed as a preprocessing step 
-  Interpolation over texels after tracing pass 

Lightmaps 



Lightmaps 



Photon Tracing vs. Complexity 

-  Memory consumption: texels on all primitives are 
wasteful 

-  Preprocessing: area computation for large numbers 
of texels takes too long 

-  Execution time: far too many photons have to be 
cast for a stable estimate 

-  Impossible to attach to implicit objects, e.g. L-
systems 



Complex Scenes: Points of Failure 

-  Memory consumption explodes 

-  Execution time is unacceptable 
-  Set-up times are too high 
-  Convergence is too slow for Monte Carlo methods 

-  Ray-based methods converge too slowly if number 
of primitives is large 



-  Fredholm Integro-di!erential equation 
-  Completely describes light transport in a scene 
-  Usually impossible to solve analytically (infinite 

cascade) 
-  Most solution strategies take only certain aspects 

into account 

Summary 



-  Geometry: partially (polygonisation!) 
-  Emission: yes (if implemented) 
-  Integral: no 
-  Surfaces: rudimentary 
-  Recursion: no 

Solving the RE: Scanline Rendering 



OpenGL Scanline Rendering 



-  Geometry: yes, accurately 
-  Emission: yes 
-  Integral: no 
-  Surfaces: partially / rudimentary 
-  Recursion: partially (for mirrors and transparent 

surfaces) 

Solving the RE: Ray Tracing 



Raytraced Scene 



-  Geometry: yes (sort of – polygonisation!) 
-  Emission: yes 
-  Integral: partially (only di!use surfaces) 
-  Surfaces: same as integral 
-  Recursion: yes 

Solving the RE: Radiosity 



Radiosity 



-  Geometry: yes 
-  Emission: yes 
-  Integral: partially (from lightsource – yes, direct 

viewing – ?) 
-  Surfaces: same as integral 
-  Recursion: yes 

Solving the RE: Photon Tracing 



Photon Tracing 



-  Geometry: yes 
-  Emission: yes 
-  Integral: yes 
-  Surfaces: yes 
-  Recursion: yes 

Solving the RE: PathTracing 



Path Tracing (Metropolis) 



Rendering VO Unit 

 
 

The End 
Thank you for your attention! 


