VU Rendering SS 2015 186.101

Thomas Auzinger Károly Zsolnai

Institute of Computer Graphics and Algorithms (E186) Vienna University of Technology <u>http://www.cg.tuwien.ac.at/staff/ThomasAuzinger.html</u> <u>http://www.cg.tuwien.ac.at/staff/KarolyZsolnai.html</u>

VU Rendering SS 2015 Unit 01 – Introduction

Overview

- Organization
- Topics
- Definition
- History and Context
- Lecture Scope
- Basic Optics

Homepage

TISS: <u>https://tiss.tuwien.ac.at/course/courseList.xhtml</u> (search for 'Rendering')

Institute: http://www.cg.tuwien.ac.at/courses/Rendering

Registration in TISS (until 24.3.)

Lecture dates of SS 2015: 11.3., 18.3., ...(all further announced at least a week before) 13:30 – 15:00, Seminar room 186

Notes

Lecture slides on the homepage after each lecture Additional literature on the homepage

Grading

Assignments

Hands-on exercises with rendering programs and mathematical problems

Final oral exam

About the course material and the assignments

Literature

Physically Based Rendering, Second Edition M.Pharr and G. Humphreys

Literature

More literature and references to scientific papers on the homepage

Any questions?

Rendering theory

Basic optics, rendering equation, filtering

Rendering algorithms

Ray tracing, radiosity, (bi-directional) path tracing, Metropolis light transport, precomputed radiance transfer, (stochastic progressive) photon mapping, irradiance caching

Acceleration techniques

Spatial hierarchies, sampling strategies

Surface representations BRDF models: Phong, Oren-Nayar, Cook-Torrance

Topics

Participating media

(Subsurface) Scattering, volumetric photon mapping, photon beams

- Higher dimensional effects
 Motion blur, depth of field
- Camera models
- Post processing
 HDR, tone mapping

Teglverksgata 2, Google StreetView

Teglverksgata 2, P. Guthries

The process of generating an **image** from a **model**, by means of a **computer program**.

image + model - comp: painting, photography

The process of generating an **image** from a **model**, by means of a **computer program**.

image + model - comp: painting, photography
model + comp - image: 3D printing, sound rendering

The process of generating an **image** from a **model**, by means of a **computer program**.

image + model - comp: painting, photography
model + comp - image: 3D printing, sound rendering
image + comp - model: abstract graphics

The process of generating an **image** from a **model**, by means of a **computer program**.

image + model – comp: painting, photography model + comp – image: 3D printing, sound rendering image + comp – model: abstract graphics

Prehistoric Cave Paintings (~30 000 BC)

Chauvet-Pont-d'Arc, France (from http://donsmaps.com/chauvetcave.html)

Antiquity

Roman Art (~100 BC)

Alexander mosaic, Popeii

Middle Ages

Book Illustration (~1165)

Renaissance

(Re)discovery of Perspective

Filippo Brunelleschi (early 15th century)

History and Context

Renaissance

Albrecht Dürer (1471-1528)

Leonardo da Vinci (1452-1519)

Romanticism

Daguerreotype (1838)

Louis-Jacques-Mandé Daguerre (1787 - 1851)

Modern Painting

Impressionism

Water Lilies - Claude Monet (1840 - 1926)

Modern Painting

Cubism

Three Musicians - Pablo Picasso (1881 - 1973)

Modern Painting

Action Painting

Autumn Rhythm - Jackson Pollock (1912 - 1956)

Postmodern Painting

Hyperrealism

Hot Day III - Pedro Campos (1966 -)

Photography

Digital Photography

Exploded view of a digital single-lens reflex camera

Photography

Computational Photography

Ng R., Fourier Slice Photography, in SIGGRAPH 2005

The process of generating an **image** from a **model**, by means of a **computer program**.

image + model - comp: painting, photography
model + comp - image: 3D printing, sound rendering
image + comp - model: abstract graphics

Alternative Output

3D Printing

Alternative Output

Sound

Zheng C., James D.L., Harmonic Fluids, in SIGGRAPH 2009

Applications

- Games/Simulators
- Interactive Modeling/Design
- Augmented/Virtual Reality/Telepresence
- Movies/VFX
- E-Commerce
- Architecture
- Industrial Design

Applications

- Games/Simulators
- Interactive Modeling/Design
- Augmented/Virtual Reality/Telepresence
- Movies/VFX
- E-Commerce
- Architecture
- Industrial Design

Applications

- Games/Simulators
- Interactive Modeling/Design
 - Augmented/Virtual Reality/Telepresence

Movies/VFX

- E-Commerce
- Architecture
- Industrial Design

Immersion

- Interactive/realtime performance paramount
- Realism a secondary goal or not desired
- Dominated by rasterization
- Ray-based rendering is coming but not there yet

Skyrim, (from http://www.flickr.com/javiercc)

Joint Terminal Attack Controller Virtual Trainer Dome, (from http://gizmodo.com/315435)

Applications

- Games/Simulators
- Interactive Modeling/Design
- Augmented/Virtual Reality/Telepresence

Movies/VFX

- E-Commerce
 - Architecture
- Industrial Design

Believable Realism

- Artistic expression paramount
- Realism a secondary goal or not desired
- RenderMan, Maya, 3DMax, ...

Brave, Pixar 45

Photographed Plate

Gravity, Warner Bros. Pictures

Applications

- Games/Simulators
- Interactive Modeling/Design
- Augmented/Virtual Reality/Telepresence

Movies/VFX

- E-Commerce
- Architecture
- Industrial Design

Prediction

- Physically correct result paramount
- Realism the primary goal
- Constrained to physically possible scenes
- Radiance, Brazil, Maxwell, ...

Kitchen, Taller Arquitectura Virtual

Gemstone, GT Jewelry Design

Ocean Rocker, Toni Fresnedo (design Jolyon Yates)

Applications

- Games/Simulators
- Interactive Modeling/Design
 - Augmented/Virtual Reality/Telepresence

Movies/VFX

E-Comme VO/UE Computer Graphics Architect VU Realtime Graphics Industrial Design

Applications

- Games/Simulators
- Interactive Modeling/Design
- Augmented/Virtual Reality/Telepresence
 - Movies/VFX
- E-Commerce
- Architecture
- Industrial Design

Light

Spectrum of electromagnetic radiation (from wikipedia)

Quantum Electrodynamics

Light Simulation

Classical Electrodynamics

Light Simulation

Physical Optics

Diffraction and interference at a double-slit (© McGraw-Hill Companies Inc.)

Light **Simulation**

Radiometry

Measurements of light distribution in space and time

Radiometry

Measurements of light distribution in space and time

Radiant energy
$$Q_e$$
 [J] \leftarrow Phyical unit Energy of the light

Radiant flux / radiant power $\Phi_e \left[W = Js^{-1} \right]$ Energy per unit of time

Flux too unspecific as it contains no spatial or directional information on the light distribution.

We introduce these quantities in the following slides and start with a directional description of flux (i.e. in which direction is more less flux).

Radiant Intensity $I_e(\omega) \left[Wsr^{-1} \right]$

Emanated flux per solid angle of a point source

Radiant Intensity $I_e(\omega) \left[Wsr^{-1} \right]$

Emanated flux per solid angle of a point source

Radiant Intensity $I_e(\omega) \left[Wsr^{-1} \right]$

$$I_e(\omega) = \frac{d\Phi_e}{d\omega}$$

Radiant Intensity $I_e(\omega) \left[Wsr^{-1} \right]$

Radiant Intensity $I_e(\omega) \left[Wsr^{-1} \right]$

Isotropic point source

$$\Phi_e = \int_{\text{Sphere}} I_e(\omega) \, d\omega$$
$$= I \int_{\text{Sphere}} d\omega$$
$$= I \int_0^{2\pi} \int_0^{\pi} \sin \theta \, d\varphi \, d\theta$$
$$= 4\pi I$$

Radiant Intensity $I_e(\omega) \left[Wsr^{-1} \right]$

Isotropic point source

$$\Phi_e = \int_{\text{Sphere}} I_e(\omega) \, d\omega$$
$$= I \int_{\text{Sphere}} d\omega$$
$$= I \int_0^{2\pi} \int_0^{\pi} \sin \theta \, d\varphi \, d\theta$$
$$= 4\pi I$$

We also want to describe the spatial distribution of flux on surfaces (i.e. at which location on the surface is more or less flux arriving or departing).

Irradiance
$$E_e(x)$$
 [Wm⁻²]

Flux per unit area incident on a surface

 $E_e(x) = \frac{d\Phi_{e,i}}{dA}$

surface

Irradiance $E_e(x) \left[Wm^{-2} \right]$ Flux per unit area incident on a surface

$$E_e(x) = \frac{d\Phi_{e,i}}{dA}$$

Radiant exitance $M_e(x) \left[Wm^{-2} \right]$ Flux per unit area emitted from a

 $M_e(x) = \frac{d\Phi_{e,e}}{dA}$

Irradiance $E_e(x) \left[Wm^{-2} \right]$ Flux per unit area incident on a surface

$$E_e(x) = \frac{d\Phi_{e,i}}{dA}$$

Radiant exitance
$$M_e(x) \left[Wm^{-2} \right]$$

Flux per unit area emitted from a surface

Radiosity $J_e(x) \left[Wm^{-2} \right]$ Flux per unit area emitted + reflected from a surface

$$M_e(x) = \frac{d\Phi_{e,e}}{dA}$$

$$J_e(x) = \frac{d\Phi_{e,\mathrm{er}}}{dA}$$

The fundamental description of light in the context of ractracing is both a spatial and directional quantitiy (i.e. at which location on a surface and to which direction more or less flux is emitted).

Basic Optics

Radiance $L_e(x,\omega) \left[Wsr^{-1}m^{-2} \right]$

Flux per unit area per solid angle per projected unit

area

Basic Optics

Radiance
$$L_e(x, \omega) \left[\text{Wsr}^{-1} \text{m}^{-2} \right]$$

Flux per unit area per solid angle per projected unit area

$$L_e(x,\omega) = \frac{d^2 \Phi_e}{d\omega \, dA \cos \theta}$$
$$= \frac{dI_e}{dA \cos \theta}$$

Basic Optics

Radiance $L_e(x, \omega) \left[\text{Wsr}^{-1} \text{m}^{-2} \right]$ Uniform diffuse area source (with radius *R*)

Spectral quantities

Radiometric quantity per wavelength

e.g. spectral radiance $L_{e,\lambda}(x,\omega) \left[\text{Wsr}^{-1}\text{m}^{-2}\text{nm}^{-1} \right]$ $L_{e,\lambda}(x,\omega) = \frac{d^2 \Phi_e}{d\omega \, dA \cos \theta \, d\lambda}$

Photometry

Measurements of perceived brightness of light distribution in space and time

Photometry

Measurements of perceived brightness of light distribution in space and time

Spectral eye sensitivity $V(\lambda) \left[\text{lmW}^{-1} \right]$

Conversion

Multiplication with eye sensitivity function for each wavelength

e.g. radiance
$$L_e \rightarrow$$
 luminance L_v
 $L_v = \int L_{v,\lambda} d\lambda = \int L_{e,\lambda} V(\lambda) d\lambda$

Radiometry / Photometry

Radiometric quantity	Symbol	Unit	Photometric quantity	Symbol	Unit
Radiant energy	Q_e	[J] <i>joule</i>	Luminous energy	Q_v	[lm s] talbot
Radiant flux	Φ_e	[W] watt	Luminous flux	Φ_v	[lm] <i>lumen</i>
Radiant intensity	I_e	[W sr ⁻¹]	Luminous intensity	I_v	[cd] <i>candela</i>
Radiance	L_e	[W sr ⁻¹ m ⁻¹]	Luminance	L_v	[cd m ⁻²] <i>nit</i>
Irradiance	E_e	[W m ⁻²]	Illuminance	E_v	[lx] <i>lux</i>
Radiant exitance	M_e	[W m ⁻²]	Luminous emittance	M_v	[lx]
Radiosity	J_e	[W m ⁻²]	Luminosity	J_v	[lx]

Radiometry

Assuming the sun as a point light source with a total radiant flux of 3.86x10²⁶ Watt, what is the Irradiance outside the atmosphere of Mars at the equator?

Assuming a perfect solar collector stationed outside the atmosphere (that transforms all incoming light into electricity), how much area does it need to cover to replace the world's largest nuclear power plant (Kashiwazaki-Kariwa, Japan, 8212MW)?

Hints:

- Consult <u>http://candela.stanford.edu/lectures/09_radiometry/radiometry_slides.pdf</u>
- Consult PBRT 5.5.3
- The final answer is ~13.5km²

How to submit via email

The result has to be sent to **BOTH** of us in an email. Either as text in the email or as an attachment to it.

The format of both the email **SUBJECT** and the attachment **FILENAME** has to be as follows:

[Rendering_SS2015_(\$assignment_number)]_(\$your_matriculation _number),(\$your_name)

e.g. [Rendering_SS2015_0]_0123456, John Doe

Deadline 24.03.2015 23:59

Teaser

Next lecture 18.03.2015 13:30-15:00

