
Introduction

VU Entwurf und Programmierung einer
Rendering-Engine

Examples rendering engines
● Frostbite
● Effects, Level of Detail, Performance, Culling, Tooling,....

[image for copyright reasons ommited]

Examples rendering engines
● Unreal
● Level editor, strong tooling, runs on every console & hardware

https://forums.unrealengine.com/community/general-discussion/6602-pdf-for-ue4
-documentation-available

[image for copyright reasons ommited]

https://forums.unrealengine.com/community/general-discussion/6602-pdf-for-ue4-documentation-available
https://forums.unrealengine.com/community/general-discussion/6602-pdf-for-ue4-documentation-available

Game engines
● Have physically based lighting & materials and strive for realism
● But also have artistic input and support movie-like design
● Algorithms often fake approximations of “realism” in order to achieve

Real-time performance

● Make it fast & look good
● Challenge: high quality visuals with limited dynamism & real time
● Provide programmer interface (APIs, tooling)

Movie engines
● Physically based scene description and light

○ Advanced effects like dispersion, refraction ..

● Hacks and extensions to allow “unrealistic” artistic effects

● Make it exact & accurate & controllable
● Challenge: number of pixels/samples
● Toolchain integration instead of focus on APIs

Browser
● CAD tool on steroids
● Rendering + layouting engine
● Maximum dynamism
● Execution engine with user input

● Make it work quickly & robustly
● Challenge: everything is dynamic

Examples rendering engines
● Chrome
● Asynchronous loading
● CSS/HTML parsing,
● error recovery

What is a rendering engine?
● Things that make pixels?
● Game engine

○ Dynamic & static content
○ Tooling & content creation
○ Complex light & material system
○ Physics simulation

● Renderman
○ Light & material description
○ Artistic input

● Browser can also be seen as a rendering engine
○ Turns HTML into pixels
○ Includes real time requirements such as responsive layouting

Parts of a rendering engine

● Scene description language/system
○ Developers can describe scenes in this language
○ Scene graph, language ruleset

● Runtime system
○ Interprets or compiles input language
○ Hardware dependent optimization
○ Translates scene description into renderer operations
○ Manages, allocates resources

● Renderer
○ Creates image from renderer operations
○ Raytracer, rasterizer

Compiler tasks,
OS Tasks,...

effects, quality
etc.

API/Language
design...

Movies
● mostly preprocessed
● no user input
● only time dependent

Interactive tools
● CAD/Browser/Editor
● Everything can change
● User can edit everything

Game engine:
● Static parts (level, level

lighting)
● Dynamic parts (AI, user input)

Often little real-time interaction Strong focus on dynamismLimited
● Dynamic stuff baked in
● e.g. prebaked animation

Raytracing papers
Realtime-rendering papers:

● Shadow mapping techniques
● SSAO,...

Not too much
published work….

Limited dynamism Everything is dynamic

In research:

Degree of dynamism:

More dynamic content

Worst case: Consider current browser technology
● HTML tree very expressive
● Javascript can be used to rewrite large parts of the DOM (document object

model)

[Demo: interactive changes in browsers]

Dynamism is important and complex
● Everything may change. The entire scene might be swapped out.

○ Consider page refresh in browsers or dynamic javascript content (e.g. D3)

● Resources must be allocated/deallocated cleanly

● … while maintaining interactive performance

Dependencies: Incremental updates to the rescue
● Something changed -> refresh everything -> bad performance
● Smart Dependencies?

○ Every value becomes observable/change tracking system
○ Simple dependencies give rise to dependency graph

● Dependent change -> everything that depends on it
○ Incremental update

● Graph itself is dynamic
○ Structural change -> hard to handle, non-local effects

Abstraction
● Vulkan cube.cpp is 2900 lines of code

○ https://github.com/googlesamples/vulkan-basic-samples/blob/master/demos/cube.cpp

● Clearly, there is a need for abstraction
● Various types

○ macros
○ Reusable utility functions (e.g. createShader)
○ Notation for objects? Object list
○ Common abstraction: scene graph

■ e.g. HTML, Markdown, UI elements, scene entity tree

https://github.com/googlesamples/vulkan-basic-samples/blob/master/demos/cube.cpp

What is a scene graph
● Most general scene description
● At first glance: feel natural
● But also supports the level of dynamism & abstraction required

○ Not that easy, but we will see how….

Naive scene graph implementation
● Implementation -> traverse, allocate resources on the fly

○ OpenGL intermediate mode view

○ Command-buffer implementation possible.

● What happens if scene is dynamic: simple -> traverse again (cache resource allocations)
○ Question: when to free resources: garbage collection
○ Question: when to retraverse?
○ Answer: don’t know -> always

Better scene graph implementation
● Finding appropriate abstraction is

challenging.
● Abstraction in combination with

dynamism is even harder.
● How to provide expressive/easy

to use APIs?

Try to combine those with optimal
performance / best hardware
utilization!

[nvidia, scenix documentation]

Scene graph rendering (evaluating the graph)
Translating scene graph input structure directly (in one step) into graphics
instructions is hard. Can we approach the problem differently?

Comparison: it is hard to translate c++ directly into machine code. Most compilers
use appropriate intermediate representation

- Is there a common intermediate representation in our domain?
- We focus on rasterizer-specific features

- Materials/BRDFs in ray tracer VS cullmode stencil in GL

Requirements for Rendering Engines
● Easy to use and extend
● Translation of scene description into graphics commands

● Performance
○ Utilize graphics hardware as best as possible
○ Responsiveness
○ High-frequency changes

!!!

Graphics API Insights required
● In OpenGL there are dozens of ways to solve a problem inefficiently.

index = (index + 1) % 2;
nextIndex = (index + 1) % 2;

glReadBuffer(GL_FRONT);

glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[index]);
glReadPixels(0, 0, WIDTH, HEIGHT, GL_BGRA, GL_UNSIGNED_BYTE, 0);
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[nextIndex]);
GLubyte* ptr = (GLubyte*)glMapBufferARB(GL_PIXEL_PACK_BUFFER_ARB,
 GL_READ_ONLY_ARB);
if(ptr)
{
 processPixels(ptr, ...);
 glUnmapBufferARB(GL_PIXEL_PACK_BUFFER_ARB);
}

glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0); http://www.songho.ca/opengl/gl_pbo.html

Graphics API Insights required

http://www.bfilipek.com/2015/01/persistent-mapped-buffers-benchmark.html

● There are a many approaches for uploading data to OpenGL. Even on single
hardware there are significant differences…

● Dozens talks, forum discussions, e.g.:
○ Beyond Porting - How Modern OpenGL can radically Reduce Driver Overhead, [Everitt,

https://www.slideshare.net/CassEveritt/beyond-porting]

Low level optimizations
● For high performance, we need to

know the cost of abstraction:
● Examples:

○ Loop overhead in image processing:
memcpy vs copying pixel by pixel

○ Allocation overhead: e.g. accidental
allocations in scene graph traversal

○ Virtual calls in performance critical code?
○ How is multiple inheritance implemented?

What are the costs

Our OpenGL renderer has a custom
AMD64 assembler...

 member x.Mov(target : Register, value : uint32) =

 if target < Register.XMM0 then

 let tb = target |> byte

 if tb >= 8uy then

 let tb = tb - 8uy

 let rex = 0x41uy

 writer.Write(rex)

 writer.Write(0xB8uy + tb)

 else

 writer.Write(0xB8uy + tb)

 writer.Write value

 else

 x.Mov(Register.Rax, value)

 x.Mov(target, Register.Rax, false)

Towards interactive lighting systems
Armed with technical tools for

● Abstraction
● Mechanisms for handling dynamism
● Algorithms and datastructures
● Low level understanding and techniques

We turn shift our focus towards tooling for real-world interactive lighting
simulation….

Later in this lecture we return to more traditional
rendering techniques again...

Two lectures by Christian Luksch. Topics:
● Material systems
● Instant radiosity
● Deferred Rendering
● Physically based shading

Images © VRVis

Topics of this LV
● Render scenes efficiently using graphics hardware

○ Graphics Hardware and API (recap)
○ Common infrastructure for rasterizer-based rendering backend (intermediate language)
○ Scene description
○ Optimization techniques

● Rendering scenes nicely
○ Using lighting and material systems
○ Concrete techniques such as shadow mapping is part of other lectures
○ Here we focus on practical implementations thereof

Graphics API

GPU

Notation of renderable things

Utilities such as culling, transparency sorting, texture packing,....

Materials, Lighting (e.g. Lightmap generation)

Rendering Engine internals (this LV)

File loaders, Scene managers….

Game Engine

Engine tools, e.g.
Level editor

builds on...

Game titles

The big picture…..

Graphics API

GPU

Notation of renderable things

Utilities such as culling, transparency sorting, texture packing,....

Materials, Lighting (e.g. lightmap generation)

Rendering Engine internals

High-level Abstraction:
Graphics scenes, Shaders...

High-level Abstraction:
Graphics scenes, Shaders...

efficient mapping?

Bridging the gap

Two approaches:

● Condense scene to minimal representation and then map it to hardware
● Given hardware, what utilities can we expose to build more powerful tools?

Scene representation

Graphics APIs

magic?

Bridging the gap

Two approaches:

● Condense scene to minimal representation and then map it hardware
● Given hardware, what utilities can we expose to build more powerful tools?

Scene representation

Rendering Engine
Runtime

Graphics APIs

Upcoming topics I
● Top down: Traditional scene graph systems

○ Implementation techniques
○ Advantages and disadvantages

● Bottom up: Hardware capabilities and their implications
● Bridging the gap: Towards a rendering engine runtime system

○ How to model scene data in order to map it to graphics hardware efficiently.

● Low-level optimizations for efficient graphics programming
○ Towards adaptive optimizations

● Algorithmic optimizations
○ Algorithms and data structures for rendering engines

Upcoming topics II
● Practical topics for rendering engines

○ Performance considerations
○ Precision considerations

● Domain specific languages for
○ Dynamic data
○ Scene representation (in presence of dynamic data)
○ Shader programming

● Towards real-time high quality lighting
○ Global Illumination, Material models
○ Physically based shading
○ Deferred Shading
○ Instant radiosity, Texture packing

Videos
● Siggraph 2016: Surface-only liquids

○ offline-rendering
○ https://www.youtube.com/watch?v=9gUSmYRl8B8

● Battlefield 1 gameplay
○ User input
○ https://www.youtube.com/watch?v=-NxAzWAM9Hc

● Unity game dev speed-up
○ Scene description & scripting languages
○ https://www.youtube.com/watch?v=fiHRxD1yE4Y

https://www.youtube.com/watch?v=9gUSmYRl8B8
https://www.youtube.com/watch?v=-NxAzWAM9Hc
https://www.youtube.com/watch?v=fiHRxD1yE4Y

