
Organization

VU Entwurf und Programmierung einer 
Rendering-Engine

186.166 - WS 2.0

Harald Steinlechner, Georg Haaser, Christian Luksch, Stefan Maierhofer



Organization
● Vorlesung 

○ Monday, 16:15 (s.t.) - 17:45
○ Seminarraum 186, Institut für Computer Graphik und Algorithmen
○ ECTS efforts: approx half/half

● Übung
○ As a project, implement a module for a rendering engine
○ Topics can be chosen by students



Student project
● Extra slides for “Übungsteil”
● Similar to previous years:

○ Rendering and optimization a scene. This includes:
■ Geometry processing (e.g. Terrain generation, Meshes,...) or model loading
■ Acceleration data structure or optimization algorithm
■ Rendering of the scene



Exam
● Hand in (per email) the project + a written report 

○ Till 2 days before the exam date
○ Written report (2-4 pages)

■ Description of the project
■ Description of the used techniques
■ Analysis of the performance

● Oral exam
○ End of January till end of march

■ Email with 2 possible dates to rendEng@vrvis.at
○ Demo of the project
○ Two questions of the lecture content

■ Details not that important, but understanding of the topics.

mailto:rendEng@vrvis.at


Contact
Harald Steinlechner

● VRVis Research Center, Donau-City-Straße 11
● rendEng@vrvis.at
● Register in TISS
● When projects/team is fixed: write email with task description to hs@vrvis.at

VO Homepage

● https://www.cg.tuwien.ac.at/courses/RendEng/

mailto:rendEng@vrvis.at


The mission of a rendering engine….
● Provide easy to use software components...
● which can be used to solve rendering engine tasks (like a toolbox)

In order to accomplish this, we need:

● Algorithms and Datastructures
● Graphics API & Hardware Insights
● API design
● Domain specific languages (e.g. scene description)



After the lecture you are able to...

● Analyse specific use case for rendering engines
● Structure reusable parts of a rendering engine
● Evaluate techniques and their trade offs including benchmarks
● Apply lighting and global illumination techniques to applications



Content of this LV
● Requirements for the design of rendering engines
● Hardware and Graphics APIs (OpenGL, Direct3D, Vulkan,..)
● Scene Representation (Scene graphs, display lists, command buffers,...)
● Static and Dynamic Data (Incremental Update Techniques)
● Optimizations (Caching, Culling, Level of Detail, Bounding Volume 

Hierarchies, Just-In-Time Optimization)
● Resource Management 
● Domain Specific Languages (HLSL, Spark, FShade, Semantic Scene 

Graph,..)
● Reusable Components/Design for Rendering Engines



About the LV team & Aardvark
● LV Team is basically the aardvark core development team.
● Active development of the aardvark rendering engine since 2006 with Robert 

F. Tobler.
● Roberts mission: easy to use but high-performance rendering engine.
● Aardvark - An Advanced Rapid Development Visualization and Rendering 

Kernel
○ Heavily used in research + industry projects





Seealso
https://aardvarkians.com/

https://aardvarkians.com/


Some of our projects
Live demo



Till approx 2002
Aart (Obj C)

Approx. 2002
Ave (C++)
Traditional Scene Graph

Approx. 2005
Aardvark (C#)

Approx. 2008
Aardvark 2008 (C#)
Semantic Scene Graph [Tobler 2011]

Aardvark 2010
Lazy Incremental Computation
For efficient Scene Graph 
Rendering [Wörister et al. 2013]

Aardvark 2015
Composable Shaders 
[Haaser et al. 2014]
Towards Incremental Computation, 
Attribute Grammars for Incremental Scene Graph Rendering

Approx 2016
aardvark.rendering
aardvark.base
General purpose incremental Computation, 
Incremental Rendering VM [Haaser 2015]

2017
Vulkan, ELM architecture, 
Aardvark goes web

Managed language 
for rendering 
engine?

Clean Semantics for 
Rendering

Performance! Usability: 
● Domain Specific Languages
● Flexibility

Fast and flexible! Usability, Remote Rendering, 
Aardvark in the browser



Challenges
● Size of data-sets 

○ Often requires out of core approaches

● Dynamic and static geometry
● Efficient graphics hardware utilization
● Support for special effects 

○ APIs for accessing special hardware features
○ Provide mechanisms to specify for example shaders and post processing

● Many different application areas: Focus on real-time applications
○ Terrain, laserscan, reconstructed data, game levels
○ Architecture and planning
○ Light simulation (Global Illumination)
○ Games 
○ Interactive Editing applications



Design Space
How to structure a rendering engine

● What interfaces and modules useful
● How to transfer data
● How to manage memory (we have GPU and main memory)
● How to store data in memory (e.g. for efficiency reasons)
● How to optimize, how to make use of multiple CPU cores

Graphics hardware specific questions

● What to compute in shaders 
● What to compute on CPU (in what precision?)



What to expect
● Tools/Algorithms/Concepts to implement rendering engines
● Hardware/Graphics API insights
● How to structure rendering engine into modules

○ (Low cost) abstraction techniques
○ Compiler techniques

● Important data-structures in practise
○ k-d-Trees, Octrees

● Performance considerations
○ Optimizations (how to pack buffers etc)
○ Costs of programming language abstractions (e.g. can we afford virtual function calls?)

● How to manage large scenes (performance + memory)
● Approaches for implementing lighting/material systems



What to expect
● Dependencies and incremental computation for rendering engines

○ Efficient ways to handle dynamic data

● Scene representation
● Rendering of big scenes

○ Terrain-rendering, rendering precision, caches

● Parallelization for rendering engines

● Not content of this LV:
○ Graphics programming tutorial
○ How to use existing engines
○ How to implement concrete tooling (e.g. level editor, material editor)



Timeline
● 14.10.2019 - Organization, Introduction & Motivation
● 21.10.2019 - Scene representation
● 28.10.2019 - Optimization techniques for rendering engines
● 04.11.2019 - Data and rendering engines
● 11.11.2019 - Benchmarking, Representing fully dynamic scenes, Aardvark Tutorial
● 18.11.2019 - Optimization techniques for fully dynamic scenes
● 25.11.2019 - Domain Specific Languages for Rendering Engines, Composable Shaders
● 02.12.2019 - Materials and Lights for Rendering Engines,
● 09.12.2019 - Shading System and Global Illumination

○ Including lightmap packing, instant radiosity, deferred rendering 
techniques,..

● 16.12.2019 - Questions regarding the lecture/project



Questions


