
Real-Time Rendering
(Echtzeitgraphik)

Dr. Michael Wimmer
wimmer@cg.tuwien.ac.at

Texturing

Overview

OpenGL lighting refresher

Texture Spaces

Texture Aliasing and Filtering

Multitexturing

Lightmapping

Texture Coordinate Generation

Projective Texturing

Multipass Rendering

Vienna University of Technology 3

But Before We Start: Shading

Flat shading

compute light interaction per polygon

the whole polygon has the same color

Gouraud shading

compute light interaction per vertex

interpolate the colors

Phong shading

interpolate normals per pixel

Remember: difference between

Phong Light Model

Phong Shading

Vienna University of Technology 4

But Before We Start: OpenGL Lighting

Phong light model at each vertex (glLight, …)

Local model only (no shadows, radiosity, …)

ambient + diffuse + specular (glMaterial!)

Fixed function: Gouraud shading

Note: need to interpolate specular separately!

Phong shading: calculate Phong model in
fragment shader

Vienna University of Technology 5

Why Texturing?

Idea: enhance visual appearance of plain surfaces
by applying fine structured details

Eduard Gröller, Stefan Jeschke 6

OpenGL Texture Mapping

Basis for most real-time rendering effects

Look and feel of a surface

Definition:

A regularly sampled function that is mapped onto
every fragment of a surface

Traditionally an image, but…

Can hold arbitrary information

Textures become general data structures

Will be interpreted by fragment programs

Can be rendered into important!
Vienna University of Technology 7

Types of Textures

Spatial Layout

1D, 2D, 3D

Cube Maps

Formats (too many), e.g. OpenGL

LUMINANCE16_ALPHA16: 32bit = 2 x 16 bit bump
map

RGBA4: 16bit = 4 x 4 colors

RGBA_FLOAT32: 128 bit = 4 x 32 bit float

compressed formats, high dynamic range
formats, …

Vienna University of Technology 8

Texturing: General Approach

Eduard Gröller, Stefan Jeschke 9

Texture space (u,v) Object space (xO,yO,zO) Image Space (xI,yI)

Parametrization Rendering

(Projection etc.)

Texels

Texture Spaces

Vienna University of Technology 10

Object space

(x,y,z,w)

Parameter Space

(s,t,r,q)

Texture Space

(u,v)

RenderingModeling

Texture

projection

Texture

function

Texture Projectors

Where do texture coordinates come from?

Online: texture matrix/texcoord generation

Offline: manually (or by modeling prog)

spherical cylindrical planar natural

Vienna University of Technology 11

Texture Projectors

Where do texture coordinates come from?

Offline: manual UV coordinates by DCC program

Note: a modeling Problem!

Vienna University of Technology 12

Texture Functions

How to extend texture beyond the border?

Border and repeat/clamp modes

Arbitrary (s,t,…) [0,1] [0,255]x[0,255]

repeat mirror/repeat clamp border

Vienna University of Technology 13

Texture Aliasing

Problem: One pixel in image space covers many texels

Eduard Gröller, Stefan Jeschke 14

Texture Aliasing

Caused by undersampling: texture information is lost

Eduard Gröller, Stefan Jeschke 15

Texture space

Image space

Texture Anti-Aliasing

A good pixel value is the weighted mean of the pixel area
projected into texture space

Eduard Gröller, Stefan Jeschke 16
Texture space u

v

Image space

Pixel

X

X

Texture Anti-Aliasing: MIP Mapping

MIP Mapping (“Multum In Parvo”)

Texture size is reduced by factors of 2
(downsampling = "much info on a small area")

Simple (4 pixel average) and memory efficient

Last image is only ONE texel

Eduard Gröller, Stefan Jeschke 17

Texture Anti-Aliasing: MIP Mapping

MIP Mapping Algorithm

D := ld(max(d1,d2))

T0 := value from texture D0= trunc (D)

Use bilinear interpolation

Eduard Gröller, Stefan Jeschke 18

d1

d2

Bilinear interpolation Trilinear interpolation

X

"Mip Map level"

Texture Anti-Aliasing: MIP Mapping

Trilinear interpolation:

T1 := value from texture D1 = D0+1 (bilin.interpolation)

Pixel value := (D1–D)·T0 + (D–D0)·T1

Linear interpolation between successive MIP Maps

Avoids "Mip banding" (but doubles texture lookups)

Eduard Gröller, Stefan Jeschke 19

Texture Anti-Aliasing: Mip Mapping

Other example for bilinear vs. trilinear filtering

Eduard Gröller, Stefan Jeschke 20

Texture Anti-Aliasing

Bilinear reconstruction for texture magnification (D<0)
("upsampling")

Weight adjacent texels by distance to pixel position

Eduard Gröller, Stefan Jeschke 21
Texture space u

-v

X

T(u+du,v+dv)

= du·dv·T(u+1,v+1)

+ du·(1–dv)·T(u+1,v)

+ (1-du)·dv·T(u,v+1)

+ (1-du)·(1-dv)·T(u,v)

du

dv

(u,v) (u+1,v)

(u+1,v+1)(u,v+1)

Anti-Aliasing (Bilinear Filtering Example)

Eduard Gröller, Stefan Jeschke 22

Original image

Nearest neighbor Bilinear filtering

Anti-Aliasing: Anisotropic Filtering

Anisotropic Filtering

View dependent filter kernel

Implementation: summed area table, "RIP Mapping",
"footprint assembly" , “sampling”

Eduard Gröller, Stefan Jeschke 23

Texture space

Anti-Aliasing: Anisotropic Filtering

Example

Eduard Gröller, Stefan Jeschke 24

Texture Anti-aliasing

Everything is done in hardware, nothing much to
do!

gluBuild2DMipmaps()generates MIPmaps

Set parameters in glTexParameter()
GL_LINEAR_MIPMAP_NEAREST

GL_TEXTURE_MAG_FILTER

Anisotropic filtering is an extension:

GL_EXT_texture_filter_anisotropic

Number of samples can be varied (4x,8x,16x)

Vendor specific support and extensions

Vienna University of Technology 25

Signal Theory

Fourier Transform of signal frequency space
(„spectrum“)

Multiplication (mul) in primary space =
Convolution (conv) in frequency space

Typical signals and their spectra:

Box <-> sin(x)/x (=„sinc“)

Gaussian <-> Gaussian

Impulse train <-> Impulse train

Width inverse proportional!

Vienna University of Technology 26

CG Signal Pipeline: Overview

Initial Sampling

Resampling

Display

Vienna University of Technology 27

CG Signal Pipeline: Initial Sampling

Input: continuous signal

Nature or computer generated

Bandlimiting: remove high frequencies

conv sinc <-> mul box

Happens in camera optics, lens of eye, or
antialiasing (direct convolution, supersampling)

Sampling:

mul impulse train <-> conv impulse train

Leads to replica of spectra!

Result: image or texture
Vienna University of Technology 28

CG Signal Pipeline: Resampling

Input: Samples = discrete signal (usually texture)

Reconstruction:

conv sinc <-> mul box

„Removes“ replica of spectrum in sampled repr.

Bandlimiting:

Only required if new sampling frequency is lower!

Typically through mipmapping

Sampling

Result: another texture or final image (=frame
buffer)

Vienna University of Technology 29

CG Signal Pipeline: Display

Input: Samples (from frame buffer)

Reconstruction

Using display technology (e.g. CRT: Gaussian!)

Result: continuous signal (going to eye)

Vienna University of Technology 30

CG Signal Pipeline: Observations

Practice: substitute sinc by Gaussian

sinc has negative values

Gaussian can be cut off gracefully

„Reconstruction“ is really an interpolation!

Reconstruction ≠ Antialiasing!

Aliasing: overlap of signal replica in sampling

Bandlimiting = Antialiasing

Magnification reconstruction only

Minification bandlimiting + reconstruction

Vienna University of Technology 31

CG Signal Pipeline: Full Scene Antialiasing

Supersamling

Multisampling (MSAA): combines

Supersampling (for edges)

Texture filtering (for textures)

Only one shader evaluation per final pixel

Morphological Antialiasing (FXAA, SMAA, …):

Postprocess

Analyzes image, recovers edges, antialiases them

Vienna University of Technology 32

Multitexturing

Apply multiple textures in one pass

Integral part of programmable shading

e.g. diffuse texture map + gloss map

e.g. diffuse texture map + light map

Performance issues

How many textures are free?

How many are available

Vienna University of Technology 33

Multitexture – How?

Simple(!) texture environment example:

Programmable shading makes this easier!

Vienna University of Technology 34

glActiveTexture(GL_TEXTURE1);

glTexEnvi(GL_TEXTURE_ENV, …)

… GL_TEXTURE_ENV_MODE, GL_COMBINE);

… GL_COMBINE_RGB, GL_MODULATE);

… GL_SOURCE1_RGB, GL_TEXTURE);

… GL_OPERAND1_RGB, GL_SRC_COLOR);

… GL_SOURCE2_RGB, GL_PREVIOUS);

… GL_OPERAND2_RGB, GL_SRC_COLOR);

C = CT1 · CT0

Example: Light Mapping

Used in virtually every commercial game

Precalculate diffuse lighting on static objects

Only low resolution necessary

Diffuse lighting is view independent!

Advantages:

No runtime lighting necessary

VERY fast!

Can take global effects (shadows, color bleeds)
into account

Vienna University of Technology 35

Light Mapping

Original LM texels Bilinear Filtering

Vienna University of Technology 36

Light Mapping

Original scene Light-mapped

Vienna University of Technology 37

Example: Light Mapping

Precomputation based on non-realtime methods

Radiosity

Raytracing

Monte Carlo Integration

Pathtracing

Photonmapping

Vienna University of Technology 38

Light Mapping

Lightmap mapped

Vienna University of Technology 39

Light Mapping

Original scene Light-mapped

Vienna University of Technology 40

Ambient Occlusion

Special case of light mapping

Cos-weighted visibility to environment modulates
intensity:

Darker where more occluded

Option: “per object” lightmap

Allows to move object
Vienna University of Technology 41

Ambient Occlusion

Vienna University of Technology 42

Model/Texture: Rendermonkey

Light Mapping Issues

Map generation:

Use single map for group of coplanar polys
Lightmap UV coordinates need to be in (0..1)x(0..1)

Map application:

Premultiply textures by light maps

Why is this not appealing?

Multipass with framebuffer blend

Problems with specular

Multitexture

Fast, flexible

Vienna University of Technology 43

Light Mapping Issues

Why premultiplication is bad…

 use tileable surface textures and low resolution
lightmaps

Vienna University of Technology 44

vs.

+

Full Size Texture

(with Lightmap)
Tiled Surface Texture

plus Lightmap

Light Mapping/AO Toolset

DCC programs (Blender, Maya…)

Game Engines (Irrlicht)

Light Map Maker (free)

Ambient Occlusion:

xNormal

Vienna University of Technology 45

Texture Coordinates

Specified manually (glMultiTexCoord())

Using classical OpenGL texture coordinate
generation

Linear: from object or eye space vertex coords

Special texturing modes (env-maps)

Can be further modified with texture matrix
E.g., to add texture animation

Can use 3rd or 4th texture coordinate for
projective texturing!

Shader allows complex texture lookups!

Vienna University of Technology 46

Texture Coordinate Generation

Specify a “plane” (i.e., a 4D-vector) for each
coordinate (s,t,r,q)

Example: s = p1 x + p2 y + p3 z + p4 w

Think of this as a matrix T with plane parameters as
row vectors

Vienna University of Technology 47

GLfloat Splane[4] = { p1, p2, p3, p4 };

glTexGenfv(GL_S, GL_EYE_PLANE, Splane);

glEnable(GL_TEXTURE_GEN_S);

Texture Coordinate Generation

Object-linear:

Eye-linear:
Te = T · M-1

(M…Modelview matrix at
time of specification!)
Effect: uses coordinate space
at time of specification!

Eye: M=identity
World: M=view-matrix

Vienna University of Technology 48

object
w

z

y

x

q

r

t

s

=

T

eye
w

z

y

x

q

r

t

s

=

Te

Texture Animation

Classic OpenGL

Can specify an arbitrary 4x4 Matrix,
each frame!

glMatrixMode(GL_TEXTURE);

There is also a texture matrix stack!

Shaders allow arbitrary dynamic calculations with
uv-coordinates

Many effects possible:

Flowing water, conveyor belts, distortions etc.

Vienna University of Technology 49

Projective Texturing

Projective Texture Mapping

Want to simulate a beamer

… or a flashlight, or a slide projector

Precursor to shadows

Interesting mathematics:
2 perspective
projections involved!

Easy to program!

Vienna University of Technology 51

Projective Texture Mapping

Vienna University of Technology 52

Projective Texture Mapping: Vertex Stage

Map vertices to light frustum

Option 1: from object space

Option 2: from eye space

Projection
(perspective transform)

Vienna University of Technology 53

Spaces

Vienna University of Technology 54

Projective Texture Mapping

OpenGL does not store Modeling Matrix

No notion of world space!

Vienna University of Technology 55

Camera

view

(look at)

matrix

Modeling

matrix

xo

yo

zo

wo

xe

ye

ze

we

=

Modelview

Camera Space Object Space

Projective Texture Mapping

Version 1: transforming object space coordinates

Disadvantage: need to provide model matrix for
each object in shader!

Classic OpenGL: even more difficult!

Vienna University of Technology 56

1/2

1/2

1/2

1

1/2

1/2

1/2
Light

(projection)

matrix

Light

view

(look at)

matrix

Modeling

matrix

xo

yo

zo

wo

s

t

r

q

=

TMap [-1..1]

to [0..1]

Projective Texture Mapping

Version 2: transforming eye space coordinates

Advantage: matrix works for all objects!

Vienna University of Technology 57

1/2

1/2

1/2

1

1/2

1/2

1/2
Light

(projection)

matrix

Light

view

(look at)

matrix

Inverse

eye

view

(look at)

matrix

xe

ye

ze

we

s

t

r

q

=

T

Classic OpenGL TexGen Transform

Vienna University of Technology 58

1/2

1/2

1/2

1

1/2

1/2

1/2
Light

frustum

(projection)

matrix

Light

view

(look at)

matrix

Inverse

eye

view

(look at)

matrix

Eye

view

(look at)

matrix

Modeling

matrix

xo

yo

zo

wo

xe

ye

ze

we

xe

ye

ze

we

s

t

r

q

=

=

Supply this combined transform to glTexGen

Automatically

applied by TexGen

(set Modeling

matrix to eyeview)

Modelview

Projective Texture Mapping: Rasterization

Problem: texture coordinate interpolation

Texture coordinates are homogeneous!

Look at perspective correct texturing first!

Vienna University of Technology 59

Perspective Texture Mapping

Problem: linear interpolation in rasterization?

Vienna University of Technology 60

2

2

1

1

21

21

w

x
b

w

x
a

bwaw

bxax

screenspace

interpolation

objectspace

interpolation

a = b = 0,5; P = (x,y,z,w,1,u,v,…)

2

2

1

1

w

P
b

w

P
aPs =

21

21

bwaw

bPaP
Po

=

Perspective incorrect interpolation:
Use screen-space a,b to calculate Po!

http://www.cs.unc.edu/~andrewz/comp236/hw6/tex_pc_repeat_nearest_replace_sharp.jpg
http://www.cs.unc.edu/~andrewz/comp236/hw6/tex_pc_repeat_nearest_replace_sharp.jpg
http://www.cs.unc.edu/~andrewz/comp236/hw6/tex_no_pc_repeat_nearest_replace_sharp.jpg
http://www.cs.unc.edu/~andrewz/comp236/hw6/tex_no_pc_repeat_nearest_replace_sharp.jpg

Perspective Texture Mapping

Solution: interpolate (s/w, t/w, 1/w)

(s/w) / (1/w) = s etc. at every fragment

Vienna University of Technology 61each vertex

each fragment

Projective Texturing

What about homogeneous texture coords?

Need to do perspective divide also for projector!

(s, t, q) (s/q, t/q) for every fragment

How does OpenGL do that?

Needs to be perspective correct as well!

Trick: interpolate (s/w, t/w, r/w, q/w)

(s/w) / (q/w) = s/q etc. at every fragment

Remember: s,t,r,q are equivalent to x,y,z,w in
projector space! r/q = projector depth!

Vienna University of Technology 62

Homogeneous Perspective Correct Interpolation

[x,y,z,1,r,g,b,a]

texcoord generation [x,y,z,1, r,g,b,a, s,t,r,q]

Modelviewprojection [x’,y’,z’,w,1, r,g,b,a, s,t,r,q]

Project (/w)

[x’/w, y’/w, z’/w, 1/w, r,g,b,a, s/w, t/w, r/w, q/w]vert

Rasterize and interpolate
[x’/w, y’/w, z’/w, 1/w, r,g,b,a, s/w, t/w, r/w, q/w]frag

Homogeneous: texture project (/ q/w)
[x’/w,y’/w,z’/w,1/w, r,g,b,a, s/q,t/q,r/q,1]

Or non-homogeneous: standard project (/ 1/w)
[x’/w, y’/w, z’/w, 1/w, r,g,b,a, s,t,r,q] (for normals)

Vienna University of Technology 63

Projective Texture Mapping

Problem

reverse projection

Solutions

Cull objects
behind projector

Use clip planes to eliminate objects behind projector

Fold the back-projection factor into a 3D attenuation
texture

Use to fragment program to check q < 0

Vienna University of Technology 64

Projective Texture Mapping

Problems

Resolution problems

Projection behind
shadow casters

 Shadow Mapping!

Vienna University of Technology 65

Projective Texture Mapping Example

Example shown in CG Shading Language

CG is proprietary to NVIDIA

C-like synthax

HLSL (DirectX shading language) nearly
the same synthax

Shading languages have specialized calls
for projective texturing:

CG/HLSL: tex2Dproj

GLSL: texture2DProj

They include perspective division

Vienna University of Technology 66

CG Vertex Program

Input: float4 position,

float3 normal

Output: float4 oPosition,

float4 texCoordProj,

float4 diffuseLighting

Uniform:float Kd,

float4x4 modelViewProj,

float3 lightPosition,

float4x4 textureMatrix

Vienna University of Technology 67

CG Vertex Program

oPosition =

mul(modelViewProj, position);

texCoordProj =

mul(textureMatrix, position);

float3 N = normalize(normal);

float3 L = normalize(lightPosition

– position.xyz);

diffuseLighting =

Kd * max(dot(N, L),0);

Vienna University of Technology 68

CG Fragment Program

Input: float4 texCoordProj,

float4 diffuseLighting

Output: float4 color

Uniform:sampler2D projectiveMap

float4 textureColor =

tex2Dproj(projectiveMap,

texCoordProj);

color = textureColor *

diffuseLighting;

Vienna University of Technology 69

CG vs. Classic OpenGL

Classic OpenGL:

Just supply correct matrix to glTexGen

 Projective texturing is easy to program and very
effective method.

 Combinable with shadows

Vienna University of Technology 70

Projective Shadow in Doom 3

Vienna University of Technology 71

Texture Compression

S3TC texture compression (DXTn)

Represent 4x4 texel block by two 16bit colors (5
red, 6 green, 5 blue)

Store 2 bits per texel

Uncompress

Create 2 additional
Colors between c1
and c2

use 2 bits to index
which color

4:1 or 6:1 compression

Vienna University of Technology 72

Multipass Rendering

Multipass Rendering

Recall 80 million triangle scene

Games are NOT using a = 0.5

at least not yet

Assume a = 32, I = 1024x768, d=4

Typical for last generation games

F = I * d = 3,1 MF/frame,

T = F / a = 98304 T/frame

60 Hz ~189 MF/s, ~5,6 MT/s

Vienna University of Technology 74

Do More!

Hardware underused with standard OpenGL
lighting and texturing

What can we do with this power?

Render scene more often:
multipass rendering

Render more complex pixels:
multitexturing

2 textures are usually for free

Render more complex pixels and triangles:
programmable shading

Vienna University of Technology 75

Note

Conventional OpenGL allows for many effects
using multipass

Still in use for mobile devices and last
gen consoles

Modern form: render to texture

Much more flexible but same principle

Programmable shading makes things easier

Specialized calls in shading languages

Vienna University of Technology 76

Multipass Rendering: Why?

OpenGL lighting model only

local

limited in complexity

Many effects possible with multiple passes:

Dynamic environment maps

Dynamic shadow maps

Reflections/mirrors

Dynamic impostors

(Light maps)

Vienna University of Technology 77

Multipass Rendering: How?

Render to auxiliary buffers, use result as texture

E.g.: environment maps, shadow maps

Requires pbuffer/fbo-support

Redraw scene using fragment operations

E.g.: reflections, mirrors

Uses depth, stencil, alpha, … tests

“Multitexture emulation mode”: redraw

Uses framebuffer blending

(light mapping)

Vienna University of Technology 78

Multipass Rendering: How?

(assume redraw scene…)

First pass

Establishes z-buffer (and maybe stencil)
glDepthFunc(GL_LEQUAL);

Usually diffuse lighting

Second pass

Z-Testing only
glDepthFunc(GL_LEQUAL);

Render special effect using (examples):

Blending

glStencilFunc(GL_EQUAL, 1, 1);
Vienna University of Technology 79

Multipass – Framebuffer Blending

Other equations: SUBTRACT, MIN, MAX

Vienna University of Technology 80

C = Cs S + Cd D

incoming (source)

fragment color
framebuffer color

result color

weighting factors

glEnable(GL_BLEND);

glBlendEquation(GL_FUNC_ADD);

Multipass – Blending - Weights

Example: transparency blending (window)

Weights can be defined almost arbitrarily

Alpha and color weights can be defined
separately

GL_ONE, GL_ZERO, GL_DST_COLOR,

GL_SRC_COLOR, GL_ONE_MINUS_xxx

Vienna University of Technology 81

C = Cs · + Cd · (1-)

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

