Real-Time Rendering e

Graphics Programming
OpenGL

Programrnmg Guide

Tlmd thtmn

OpenGL Architecture Review Boarc

Graphics Libraries (APIs)

Give access to graphics hardware...

m Declarative (What, not How)
m Describe the scene (e.g., scene graphs)

m SGI Open Inventor, SGI Performer, Renderman,
OpenSceneGraph...

m Imperative (How, not What)
m Sequence of drawing commands
m OpenGlL, DirectX (Direct3D), Postscript
m More direct control

Vienna University of Technology 2

Graphics Libraries (APls) M

m Using a scene graph API...

Winadoews/LLinux

Haraware

Vienna University of Technology 3

Graphics Libraries (APls) M

m Using an immediate-mode API...

Winaoews/LI

Haraware

Vienna University of Technology 4

The OpenGL Graphics System

m Web site: www.opengl.org
m OpenGL trademark owned by SGI

m More than 70 licensees
m OpenGL was controlled by the “ARB”
m Architecture Review Board

m Compagq, IBM, Intel, Microsoft, SGI, Evans &
Sutherland, HP, Sun, NVidia, ATI, Apple

m Meeting notes on the Web
m follow ARB decisions, discussions, ...

Vienna University of Technology 6

Khronos Group M

m Foundation: 2000
m Supersedes ARB

m ~100 member companies

m Many APlIs

OpenGL (since 2006)
OpenGL ES

OpenVG

OpenCL

WebGL

Collada

Vulkan

Vienna University of Technology 7

Short History of OpenGL

1982
1983

1991
1992
1995
1996
1998
2000
2001
2002
2003
2004
2008
2008
2009
2010

Silicon Graphics (SGI) incorporated
IRIS GL on IRIS 1000 terminal

(the predecessor to OpenGL)
OpenGL ARB created

OpenGL 1.0 (June 30)

OpenGL1.1

OpenGL specification made public
OpenGL 1.2

OpenGL goes open source
OpenGL 1.3

OpenGL 1.4

OpenGL 1.5

OpenGL 2.0 (Shaders)

OpenGL 3.0 (Depreciation model)
OpenGL 3.0 (Depreciation model)
OpenGL 3.2 (Geometry shaders)
OpenGL 4.0 (Tesselation)

Vienna University of Technology 9

A Short OpenGL Freshup

m All primitives made up of vertices...

GL_LINES
GL_POLYGON

GL_LINE STRIP GL_LINE_LOOP

L 4

GL_POINTS

A

a, .
GL_TRIANGLES ’

v @ e
GL_TRIANGLE_ STRIP GL_TRIANGLE_FAN GL_QUAD_STRIP

¥

Vienna University of Technology 11

OpenGL Programming Model

m OpenGL is a state machine

m All commands change state
m Fixed function: only glVertex causes action

|I)

m This is still the “mode

m Superseded by new “macro” commands
(g|DrawBuffers, gIDrawElements, ...)

Vienna University of Technology 12

vntientr o] s |

Tecim

i~ S

[L. PNV

vwne
et

Nates:

1. Commands (and constants) are shawn withaut the
gl (or G1,_| peefix.

2. The following commands do nat appear in this

dagram: glAccum, giClearAccum, glHint,

display list commands, texture object commands,

comenands for abtaining OpenGlL state

IgiGet commands and gllsEnabled), and

glPushAttrib and glPopA tirib. Uity libary

foutines are nat shawn.

Aftor their exectution, giDrawArrays and

gIDrawE lements leave affected cument vakies

indeterminate.

4. This diagram Is schematic; It may not directly
corres pand to any actual OpenGl. implementation,

The OpenGL Machine

The OpenGL" graphics system diagram, Version 1.1. Copyright © 1996 Silicon Graphics, Inc. All rights reserved.

Vertices

Evaluators
&

Vertex Artays

Input

Texturs Coardinate
Generation

&
Cueent
Values

Lighting

Matrix
Control

Clipping, Perspective,

P Thomn

[

Peghorne
[trests

ot —]

> g fasteriz™ |
Viewport Application Hasteres
Atiop Texturinig, | Pet Fragment Operations
Fesdhack Foa.
and
& Antialiasi Frama Buffer
Selection £ atiallasing %
Pixels

Primitives ———s

Frame Buffer Control

Key to OpenGL Operations

[IrTe—,
A...,,,]

Frame Buffer

OpenGL Design Goals

m Platform independent (unlike DirectX)

m Window-system dependent code separate (GLX, WGL)

m Implementations on Windows, Linux, MacQOS, Be, 0S/2,
Unix, ...

m Language independent (bindings for C, Java, Fortran, ...)
m Consistency (unlike DirectX)

m Tightly written specification

m Conformance tests and required verification

m Not too tight: not pixel exact

m Invariance across passes (for correct multipass)

Vienna University of Technology 14

OpenGL Design Goals

m Complete implementations (unlike DirectX)
m Missing hardware features emulated in software
m Silent error recovery

m Clean interface (unlike DirectX)

m State machine

m Most states are orthogonal (i.e., don’t influence
each other, no side effects!)

m Extensibility (unlike DirectX)
m Favors innovation
m New HW features first available on OpenGL!

Vienna University of Technology 15

More Goals M

m High quality

m Intuitive usability (beauty counts)

m Good documentation (Programming Guide)
m Long life...

Vienna University of Technology 16

OpenGL Problems

m Extensibility
m Different extensions for different GPUs
m Hell for production code (games)
m Design by committee
m Unified extension interfaces take long time

m Very slow to adopt non-GPU specific features (e.g.,
offscreen buffers)

= Non-existent toolset
m Shading debuggers (but: gDebugger)
m Performance tools (but: NVIDIA Parallel NSight)
m Mesh tools (already included in DirectX)

m Mediocre driver support

Vienna University of Technology 17

OpenGL Extensions

m SGI maintains central registry

m Carefully documented
m Takes into account previous extensions

m New OpenGL version could be implemented by
applying all extensions

m A bit difficult to read
m Read overview, then “Additions to...”
m Very stable process

m Extensions are refined and improved...

Vienna University of Technology 18

OpenGL Extension Categories

m Proprietary: suffixed with vendor

m e.g., SGIS texture lod, NV _fragment program
m EXT suffix
m Implemented by at least 2 vendors (usually NV,AMD)
m e.g. EXT blend func_separate
m ARB suffix
m Specification controlled by ARB
m ARB_multitexture
m 1.x: no suffix
m Required feature for version 1.x

Vienna University of Technology 19

EXT_stencil_wrap NVIDIA OpenGL Extension Specifications

Name
EXT stencil wrap
Name Strings
GL _EXT stencil wrap
Versgion
Date: 4/4/2002 Versicn 1.2
Number
176
Dependencies
None

Various algorithms use the stencil buffer to "count" the number of
surfaces that a ray passes through. As the ray passes intoe an chject,
the stencil buffer is incremented. As the ray passes out of an okject,
the stencil buffer is decremented.

GL requires that the stencil increment operaticon clamps toe its maximum
value. For algorithms that depend on the difference between the sum
of the increments and the sum of the decrements, clamping causes an

erronecus result.

This extension provides an enable for both maximum and minimum wrapplng
of stencil wvalues. Instead, the stencil value wraps in both directions.

surfaces that a ray passes through. As the ray passes into an cbiject,
the stencil buffer is incremented. As the ray passes out of an okject,
the stencil buffer is decremented.

GL requires that the stencil increment operaticon clamps toe its maximum
value. For algorithms that depend on the difference between the sum
of the increments and the sum of the decrements, clamping causes an
erronecus result.

This extension provides an enable for both maximum and minimum wrapplng

of stencil wvalues. Instead, the stencil value wraps in both directions.
Two additicnal stencil operations are specified. These new operations
are similiar to the existing INCR and DECR operations, but they wrap their
result instead of saturating it. This functicnality matches the new
stencil operaticns introduced by DirectX 6.

@w Procedures and F‘u.nctic:rD
Nore

New Tokens

Boecepted by the <sfails, <dpfails, and =<dppass:= parameter of

StencilOp:
INCE WRAP EXT 0x8507
DECE_WEAP EXT Ox8508

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

MNone

182

NVIDIA OpenGL Extension Specifications EXT_stencil_wrap

Additions to Chapter 3 of the GL Specification {(Rasterization)

HNone

and the Framebuffer)

<::::E§§Etions to Chapter 4 of the GL Specification {(Per-Fragment Operaktions

Section 4.1.4 "Stencil Test" (page 144) , change the 3rd paragraph to read:

"... The svmbolic constants are EEEP, ZERC, REPLACE, INCE, DECR,
INVERT, INCE WRAP EXT, and DECR WERAP EXT. The correspond to

keeping the current wvalue, setting it to zero, replacing it with

the reference value, incrementing it with saturation, decrementing
it with saturation, bitwise inverting it, incrementing it without
saturaticon, and decrementing it without saturation. For purposes of
incrementing and decrementing, the stencil bits are considered as an
urnsigned integer. Incrementing or decrementing with saturation will
clamp wvalues at 0 and the maximum representable value. Incrementing
or decrementing without saturaticon will wrap such that incrementing
the maximum representable value results in 0 and decrementing 0
results in the maximum representable value. L

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Additions to the GLX Specification

None

None

Additions to Chapter 6 of the GL Specification (State and State Requestas)
None

Additions to the GLX Specification
None

GLX Protocol
None

Errors
INVALID ENUM is generated by StencilOp if any cf its parameters
are not KEEP, ZERC, REPLACE, INCR, DECR, INVERT, INCR WRAP EXT,
or DECR _WRAP EXT.

New State

(table .15, pages 205)

Getb Value Type Get Command Initial WValue Sec Attribute

STENCIL FAIL pats GetIntegerv KEEP 4.1.4 stencil-buffer
STEMCIL PASS DEPTH FAIL 28 GetIntegerv FEEP 4.1.4 s=tencil-buffer
STENCIL PASS DEPTH PASS 28 GetIntegerv EEEP 4.1.4 stencil-buffer

NOTE: the only change iz that Z&é tCype changes to Zg
New Implementation Dependent State

None

183

Using Extensions

m Getglext.h from www.opengl.org

m Check for extension availability
m Acquire function pointer(s) (only Win32)
m Easier: google “opengl loading library”

#include <GL/glut.h>
#include <GL/glext.h>

PEFNGLDRAWRANGEELEMENTSEXTPROC glDrawRangeElementsEXT;

1f (glutExtensionSupported("GL EXT draw range elements")
{

glDrawRangeElementsEXT = (PFNGLDRAWRANGEELEMENTSEXTPROC)
wglGetProcAddress ("glDrawRangeElementsEXT") ;

¥

Vienna University of Technology 24

http://www.opengl.org/

OpenGL 2.0

m Main novelty: shading language GLSL

m Vertex and fragment shaders
m Replace fixed functionality

m Shader: high-level language (C-like)
m OpenGL driver: compiler and linker for shaders

m Vertex-, texture coordinates etc.:
abstract input values to shader function

m Arbitrary calculations possible
m Requires DX9 (GeforceFX/6) cards

Vienna University of Technology 25

OpenGL 3.0

m Not much new

m Vertex Array Objects (encapsulate VBO state)
m Framebuffer objects (offscreen rendering)

m sRGB framebuffers

m Texture arrays

m Transform feedback

m Conditional rendering

m Extensions: geometry shaders, instancing, ...
m Depreciation mechanism!

Vienna University of Technology 26

m Geometry shaders
m Synchronization primitives
m Core profile/compatibility profile

Vienna University of Technology 27

OpenGL 4.0/3.3 TU

m Tessellation

m Timer queries
m Double precision floating point
m Etc.

m OpenGL 3.3: for compatibility with older
hardware

Vienna University of Technology 28

OpenGL 4+

m OpenGL 4.1: minor stuff (OpenGL ES 2.0
compatibility)

m OpenGL 4.2: minor stuff (atomic counters, ...)

m OpenGL 4.3: Compute Shaders, shader buffers,
debugging, OpenGL ES 3.0 compatibility, texture
views

m OpenGL 4.4: minor stuff (bindless textures,
memory transfer optimizations, ...)

Vienna University of Technology 29

m For embedded systems
m Reduced instruction set

m Developers love it ©

m OpenGL 4.3 is backwards compatible with
OpenGL ES 3.0!

Vienna University of Technology 30

Vulkan

m Designhated OpenGL successor
m Adapted from AMD Mantle
m Binary intermediate format for shaders (SPIR)

m Client-controlled command buffers

m VK CMD BUFFER BEGIN INFO info = { ... };
vkBeginCommandBuffer (cmdBuf, &info);
vkCmdDoThisThing (cmdBuf, ...);

vkCmdDoSomeOtherThing (cmdBuf, ...);
vkEndCommandBuffer (cmdBuf) ;

m Render passes

[| VK_RENDER_PASS_CREATE_INFO info = { ... };
VK RENDER PASS renderPass;
vkCreateRenderPass (device, &info, &renderPass);

Vienna University of Technology 31

