Real-Time Rendering
(Echtzeitgraphik)

Michael Wimmer
wimmer@cg.tuwien.ac.at

Walking down the graphics pipeline

What for? TU

WIEN

Understanding the rendering pipeline is the key to
real-time rendering!

m Insights into how things work
m Understanding algorithms

m Insights into how fast things work
m Performance

Vienna University of Technology 3

Simple Graphics Pipeline

m Often found in text books

m Will take a more detailed look into OpenGL

Vienna University of Technology 4

Graphics Pipeline (pre DX10, OpenGL 2) U

WIEN

Application = Nowadays, everything part
of the pipeline is hardware

accelerated

Driver
Command

Geometry

Geometry CPU

m Fragment: “pixel”, but with
additional info (alpha,
depth, stencil, ...)

Rasterization

Texture

Rasterizer

Fragment

Display

Vienna University of Technology 5

Fixed Function Pipeline — Dataflow View M

video memory on-chip cache memory

pre-TnL
cache

geometry e Shading

system

memory commands

post-TnL cache

triangle setup

rasterization

textures S i fragment
shading

and

frame buffer

raster
operations

Vienna University of Technology 6

DirectX10 /OpenGL 3.2 Evolution

Vertex
Buffer

Application

Input
Assembler

. Buff
Driver =S

Vertex

Texture Shader

Command

| L

Geometry
Shader

Buffer _
u

Setup/
Rasterization

Texture
Geometry

-
al
o
g
@
=
o
@
O

-}
o
L)
X

Rasterization

Texture
Pixel

Texture
Shader

Rasterizer

Fragment
Depth

?I

Output

Display Color ‘|_> Merger

Vienna University of Technology 7

OpenGL 3.0

m OpenGL 2.x is not as capable as DirectX 10

m But: New features are vendor specific extensions
(geometry shaders, streams...)

m GLSL a little more restrictive than HLSL (SM 3.0)

m OpenGL 3.0 did not clean up this mess!

> OpenGL 2.1 + extensions
» Geometry shaders are only an extension
> New: depreciation mechanism

m OpenGL 4.x

> New extensions
» OpenGL ES compatibility!

Vienna University of Technology 8

DirectX 11/0penGL 4.0 Evolution

W fixed

: - inelinelll
Not the final place in the pipeline!!! B programmable

B memory

Constant
v v v

Control)
. Vertex Geometry Setup Pixel
Point —
Sha]der Tesssllator Shader Shader ‘ Rasterizer@ Shader ~>

I I |

Textur Vertex f Index fUre Texture Stream Depth Render
XEIC B utfer § Puffer Buffer Stencil Target ¢
L) :

Memory

Vienna University of Technology 9

DirectX 11

m Tesselation

m At unexpected position!
m Compute Shaders

m Multithreading
m Toreduce state change overhead

m Dynamic shader linking
m HDR texture compression
m Many other features...

Vienna University of Technology 10

DirectX 11 Pipeline M

Input Assembler

Direct3D 10 pipeline

Vertex Shader
Plus
Three new stages for
Tessellator .
Tessellation
Domain Shader Plus

Geometry Shader Compute Shader
Rasterizer — -
Pixel Shader “ - “
Output Merger
¥

Vienna University of Technology 11

JU A

Application

m Generate database (Scene description)
m Usually only once
m Load from disk
m Build acceleration structures (hierarchy, ...)

m Simulation (Animation, Al, Physics)
m Input event handlers

m Modify data structures

m Database traversal

m Shaders (vertex,geometry,fragment)

Vienna University of Technology 12

Driver

m Maintain graphics API state

m Command interpretation/translation

m Host commands = GPU commands
m Handle data transfer
®= Memory management
m Emulation of missing hardware features

m Usually huge overhead!
m Significantly reduced in DX10

Vienna University of Technology 13

Geometry Stage

\ertex Processing

ey

GEQMENASHAUIRG

Primitive Assembly

Clipping
Perspective Division

Culling

Vienna University of Technology 14

Command TU

WIEN

m Command buffering (!) m Unpack and perform

m Command interpretation format conversion (“Input
Assembler”)

glLoadIdentity() ;
glMultMatrix(T);

glBegin(GL_TRIANGLE STRIP); [E] Color |
glColor3f (0.0, 0.5, 0.0); Transformation matrix
glVertex3f(0.0, 0.0, 0.0);

glColor3f (0.5, 0.0, 0.0)

glvertex3f(1.0, 0.0, 0.0)

glColor3f (0.0, 0.5, 0.0);

glvertex3f(0.0, 1.0, 0.0);

glColor3f (0.5, 0.0, 0.0);

glvertex3f(1.0, 1.0, 0.0);

glEnd();

Vienna University of Technology 15

Vertex Processing

m Transformation

VEREXIRIOEESSING

Projection | f@Perspective Viewport
Matrix Division Transform

Projection

Vienna University of Technology 16

Vertex Processing

m Fixed function pipeline:

m User has to provide matrices, the rest happens
automatically

m Programmable pipeline:
m User has to provide matrices/other data to shader
m Shader Code transforms vertex explicitly

m We can do whatever we want with the vertex!

m Usually a g/ _ModelViewProjectionMatrix is provided
® In GLSL-Shader : gl _Position = ftransform(),

Vienna University of Technology 17

Vertex Processing

m Lighting

m Texture coordinate generation and/or
transformation

m Vertex shading for special effects

N =)

Object-space triangles Screen-space lit triangles

Vienna University of Technology 18

Tesselation

m If just triangles, nothing needs to be done,
otherwise:

m Evaluation of polynomials for curved surfaces
» Create vertices (tesselation)

m DirectX11 specifies this in hardware!
m 3 new shader stages!!!
m Still not trivial (special algorithms required)

Vienna University of Technology 19

DirectX11 Tesselation M

vertex shader hull shader tessellator domain shader

Evaluate
surface
including
displacement

Animate/skin Transform basis,
Control Determine how Tessellate!
Points much to tessellate

domain points

displacement
map

oy
"“mmh_.@
oy ey Y
S
o

Sub-D Patch Bezier Patch

Vienna University of Technology 20

Tesselation Example M

Sub-D Modeling Animation Displacement Map

Optimally tesslated!

¥

Vienna University of Technology 21

Geometry Shader

m Calculations on a primitive (triangle)

m Access to neighbor triangles
m Limited output (1024 32-bit values) ®

- No general tesselation!

m Applications:

m Render to cubemap

m Shadow volume generation

*
*
*
*
*
*
*
*
*
*
*
*
*
.0
*

m Triangle extension for ray tracing
m Extrusion operations (fur rendering)

Vienna University of Technology 22

Rest of Geometry Stage

m Clipping (in homogeneous coordinates)
m Perspective division, viewport transform
m Culling

Vienna University of Technology

Rasterization Stage

Triangle Setup

Fragment | Texture
Processing JProcessing

Raster Operations

Vienna University of Technology 24

Rasterization

m Setup (per-triangle)

m Sampling (triangle = {fragments})
m Interpolation (interpolate colors and coordinates)

Screen-space triangles Fragments

Vienna University of Technology 25

Rasterization

m Sampling inclusion determination

m In tile order improves cache coherency

m Tile sizes vendor/generation

specific

m Old graphics cards: 16x64 —

= New

> Sma
coNnc

> All ti

: 4x4

ler tile size favors

itionals in shaders

272):
O 0" & 2

e fragments calculated in

on modern hardware

Vienna University of Technology 26

parallel

Rasterization — Coordinates

m Fragments represent “future” pixels

y window

coordinate Pixel center at

(2.5, 1.5)!

3.0

2.0

1.0

0.0

/;.O 1.0 2.0 30 X window coordinate
Lower left corner
of the window

¥

Vienna University of Technology 27

Rasterization — Rules

m Separate rule for
each primitive

= Non-ambiguous!

m Polygons:

m Pixel center
contained in

polygon

m On-edge pixels:
only one is
rasterized

Vienna University of Technology

EEEEEEEEEEN
EEEEEEEEEEN
EEEEEEEEEEN
EEEEEEEEEEN
HEEEEEK -
HEEEER

HEEN

HERK

11,

1

AT rrrrr ey
EEEEEEEEEEN
EEEEEEEEEEN
EEEEEEEEEEE
EEEEEEEEEEN

M

28

Texture

m Texture “transformation” and projection

m E.g., projective textures

m Texture address calculation (programmable in
shader)

m Texture filtering

I B

Fragments Texture Fragments

Vienna University of Technology 29

Fragment TU

WIEN

m Texture operations (combinations, modulations,
animations etc.)

Texture Fragments E> ‘

Textured Fragments

Fragments

Vienna University of Technology 30

Raster Tests

= Ownership
m |s pixel obscured by other window?
m Scissor test
m Only render to scissor rectangle
m Depth test
m Test according to z-buffer
m Alpha test
m Test according to alpha-valut

... : :

Textured Fragments Framebuffer Pixels

m Stencil test

m Test according to stencil
buffer

Vienna University of Technology 31

¥

Raster Operations

m Blending or compositing

m Dithering
m Logical operations

Textured Fragments Framebuffer Pixels

Vienna University of Technology 32

¥

Raster Operations

m After fragment color calculation (“Output
Merger”)

Fragment
gnd Owlzlé(r%lm Scissor Alpha
associated Test Test Test
data
Depth Stencil
| Test Test —

Depth Buffer <—4 Stencil Buffer <J

Blending Frame
’ l RGBA onIy)]"[DItherlng I ’ l Loglcop — |Buffer

¢ 4

Vienna University of Technology 33

Display

m Gamma correction

m Digital to analog conversion if necessary

Framebuffer Pixels Light

Vienna University of Technology 34

Display

m Frame buffer pixel format:
RGBA vs. index (obsolete)

m Bits: 16, 32, 128 bit floating point, ...
m Double buffered vs. single buffered

m Quad-buffered for stereo
m Overlays (extra bit planes) for GUI
m Auxiliary buffers: alpha, stencil

Vienna University of Technology 35

Functionality vs. Frequency

m Geometry processing = per-vertex
m Transformation and Lighting (T&L)
m Historically floating point, complex operations

m Today: fully programmable flow control, texture
lookup

m 20-1500 million vertices per second
m Fragment processing = per-fragment
m Blending and texture combination
m Historically fixed point and limited operations
m Up to 50 billion fragments (“Gigatexel”/sec)
m Floating point, programmable complex operations

¥

Vienna University of Technology 36

Computational Requirements

Application

v

Command

v

Geometry

v

Rasterization

v

Texture

v

Fragment

v

Display

v

Vienna University of Technology

m Assume typical non-trivial fixed-
function rendering task

m 1 light, texture coordinates,
projective texture mapping

m 7 interpolants (z,r,g,b,s,t,q)

m Trilinear filtering, texture-, color

blending, depth buffering
m Rough estimate:

ADD CMP MUL DIV
Vertex 102 30 108 5
Fragment 66 9 /0 1

37

¥

Communication Requirements

m Vertex size: m Display:
m Position x,y,z m Colorr,g,b, 3 bytes
m Normal x,y,z m Fragment size (in frame
m Texture coordinate s,t buffer):
- 8+ 4 =32 bytes m Colorr,g,b,a

m Texture: m Depth z (assume 32 bit)
m Colorr,g,b,a, 4 bytes — 8 bytes, but goes both

ways (because of
blending!)

Vienna University of Technology 38

Communication Requirements

0.640 GB/s
— Vertex 5 Gops
Application
Fragment 150 Gops

20 Mverts
- 4 GB/s
/
1000 Mipis .
| Framebufte

120 Mpix/s Display \
\ 0.36 GB/s

Vienna University of Technology 39

16 GB/s

