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Walking down the graphics pipeline

Application Geometry Rasterizer



What for?

Understanding the rendering pipeline is the key to 
real-time rendering!

Insights into how things work

Understanding algorithms

Insights into how fast things work

Performance
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Simple Graphics Pipeline

Often found in text books

Will take a more detailed look into OpenGL
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Application Geometry Rasterizer

Display



Nowadays, everything part 
of the pipeline is hardware 
accelerated

Fragment: “pixel”, but with 
additional info (alpha, 
depth, stencil, …)

Graphics Pipeline (pre DX10, OpenGL 2 )
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Fixed Function Pipeline – Dataflow View
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DirectX10 /OpenGL 3.2 Evolution
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OpenGL 3.0

OpenGL 2.x is not as capable as DirectX 10

But: New features are vendor specific extensions 
(geometry shaders, streams…)

GLSL a little more restrictive than HLSL (SM 3.0)

OpenGL 3.0 did not clean up this mess!
 OpenGL 2.1 + extensions

 Geometry shaders are only an extension

 New: depreciation mechanism

OpenGL 4.x
 New extensions

 OpenGL ES compatibility!
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DirectX 11/OpenGL 4.0 Evolution
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DirectX 11

Tesselation

At unexpected position!

Compute Shaders

Multithreading

To reduce state change overhead

Dynamic shader linking

HDR texture compression

Many other features... 
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DirectX 11 Pipeline
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Application

Generate database (Scene description)

Usually only once

Load from disk 

Build acceleration structures (hierarchy, …)

Simulation (Animation, AI, Physics)

Input event handlers

Modify data structures

Database traversal

Shaders (vertex,geometry,fragment)
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Driver

Maintain graphics API state

Command interpretation/translation

Host commands  GPU commands

Handle data transfer

Memory management

Emulation of missing hardware features

Usually huge overhead!

Significantly reduced in DX10
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Geometry Stage
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Command

Vertex Processing

Clipping

Perspective Division

Primitive Assembly

Culling

Tesselation

Geometry Shading



Command

Command buffering (!)

Command interpretation

Unpack and perform 
format conversion (“Input 
Assembler”)
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glLoadIdentity( );

glMultMatrix( T );

glBegin( GL_TRIANGLE_STRIP );

glColor3f ( 0.0, 0.5, 0.0 );

glVertex3f( 0.0, 0.0, 0.0 );

glColor3f ( 0.5, 0.0, 0.0 );

glVertex3f( 1.0, 0.0, 0.0 );

glColor3f ( 0.0, 0.5, 0.0 );

glVertex3f( 0.0, 1.0, 0.0 );

glColor3f ( 0.5, 0.0, 0.0 );

glVertex3f( 1.0, 1.0, 0.0 );

glEnd( );

Color

Transformation matrixT



Vertex Processing

Transformation
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Vertex Processing

Fixed function pipeline:

User has to provide matrices, the rest happens 
automatically

Programmable pipeline:

User has to provide matrices/other data to shader

Shader Code transforms vertex explicitly

We can do whatever we want with the vertex!

Usually a gl_ModelViewProjectionMatrix is provided

In GLSL-Shader : gl_Position = ftransform();
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Vertex Processing

Lighting

Texture coordinate generation and/or 
transformation

Vertex shading for special effects
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T

Object-space triangles Screen-space lit triangles



Tesselation

If just triangles, nothing needs to be done,
otherwise:

Evaluation of polynomials for curved surfaces

 Create vertices (tesselation)

DirectX11 specifies this in hardware!

3 new shader stages!!!

Still not trivial (special algorithms required)
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DirectX11 Tesselation
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Tesselation Example
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Optimally tesslated!



Geometry Shader

Calculations on a primitive (triangle)

Access to neighbor triangles

Limited output (1024 32-bit values)

 No general tesselation!

Applications:
Render to cubemap

Shadow volume generation

Triangle extension for ray tracing

Extrusion operations (fur rendering)
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Rest of Geometry Stage

Primitive assembly

Geometry shader

Clipping (in homogeneous coordinates)

Perspective division, viewport transform

Culling
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Rasterization Stage
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Rasterization

Setup (per-triangle)

Sampling (triangle = {fragments})

Interpolation (interpolate colors and coordinates)
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Screen-space triangles Fragments



Rasterization

Sampling inclusion determination

In tile order improves cache coherency

Tile sizes vendor/generation 
specific

Old graphics cards: 16x64

New: 4x4

 Smaller tile size favors
conditionals in shaders

 All tile fragments calculated in parallel
on modern hardware
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Rasterization – Coordinates

Fragments represent “future” pixels
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of the window

Pixel center at

(2.5, 1.5)!



Rasterization – Rules

Separate rule for 
each primitive

Non-ambiguous!

Polygons:

Pixel center 
contained in 
polygon

On-edge pixels: 
only one is 
rasterized
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Texture

Texture “transformation” and projection

E.g., projective textures

Texture address calculation (programmable in 
shader)

Texture filtering
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Fragments Texture Fragments



Fragment

Texture operations (combinations, modulations, 
animations etc.)
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Fragments

Textured Fragments

Texture Fragments



Raster Tests

Ownership

Is pixel obscured by other window?

Scissor test

Only render to scissor rectangle

Depth test

Test according to z-buffer

Alpha test

Test according to alpha-value

Stencil test

Test according to stencil 
buffer
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Textured Fragments Framebuffer Pixels



Raster Operations

Blending or compositing

Dithering 

Logical operations
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Textured Fragments Framebuffer Pixels



Raster Operations
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After fragment color calculation (“Output 
Merger”)



Display

Gamma correction

Digital to analog conversion if necessary
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Framebuffer Pixels Light



Display

Frame buffer pixel format: 
RGBA vs. index (obsolete)

Bits: 16, 32, 128 bit floating point, …

Double buffered vs. single buffered

Quad-buffered for stereo

Overlays (extra bit planes) for GUI

Auxiliary buffers: alpha, stencil
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Functionality vs. Frequency

Geometry processing = per-vertex

Transformation and Lighting (T&L)

Historically floating point, complex operations

Today: fully programmable flow control, texture 
lookup

20-1500 million vertices per second

Fragment processing = per-fragment

Blending and texture combination

Historically fixed point and limited operations

Up to 50 billion fragments (“Gigatexel”/sec)

Floating point, programmable complex operations
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Application

Geometry

Rasterization

Texture

Fragment

Display

Command

Assume typical non-trivial fixed-
function rendering task

1 light, texture coordinates, 
projective texture mapping

7 interpolants (z,r,g,b,s,t,q)

Trilinear filtering, texture-, color 
blending, depth buffering

Rough estimate:

Computational Requirements
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ADD CMP MUL DIV

Vertex 102 30 108 5

Fragment 66 9 70 1



Communication Requirements

Vertex size:

Position x,y,z 

Normal x,y,z

Texture coordinate s,t 

 8  4 = 32 bytes

Texture:

Color r,g,b,a, 4 bytes

Display: 

Color r,g,b, 3 bytes

Fragment size (in frame 
buffer):

Color r,g,b,a

Depth z (assume 32 bit)

 8 bytes, but goes both 
ways (because of 
blending!)
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Communication Requirements
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Vertex 5 Gops

Fragment 150 Gops

Framebuffer

0.36 GB/s

1000 Mpix/s

20 Mvert/s

120 Mpix/s
16 GB/s

4 GB/s

0.640 GB/s

Texture Memory
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