
GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

1

A Practical and Robust Bump-mapping Technique for
Today’s GPUs

Mark J. Kilgard
NVIDIA Corporation
3535 Monroe Street

Santa Clara, CA 95051
(408) 615-2500

mjk@nvidia.com

March 30, 2000

Copyright NVIDIA Corporation, 2000.

ABSTRACT
Bump mapping is a normal-perturbation rendering technique for simulating lighting effects caused by patterned irregularities on
otherwise locally smooth surfaces. By encoding such surface patterns in texture maps, texture-based bump mapping simulates a
surface’s irregular lighting appearance without modeling the patterns as true geometric perturbations to the surface. Bump mapping is
advantageous because it can decouple a texture-based description of small-scale surface irregularities used for per-pixel lighting
computations from the vertex-based description of large-scale object shape required for efficient transformation and rasterization. This
paper describes a practical and robust bump-mapping technique suited for the capabilities of today’s Graphics Processor Units (GPUs).

This paper has six sections including the introduction. The second section presents the theory of bump mapping. The third section
reviews several existing hardware bump-mapping techniques. The fourth section describes the cube map texturing and “register
combiners” features of NVIDIA’s GeForce 256 and Quadro GPUs. These features in combination are the basis for the bump mapping
technique presented in the fifth section. This technique achieves real-time performance on current generation NVIDIA GPUs. The tech-
nique can model ambient, diffuse, and specular lighting terms, a textured surface decal, and attenuated and spotlight illumination. The
technique is notable because of its robustness and relative fidelity to Blinn’s original mathematical formulation of bump mapping. The
sixth section concludes. Several appendices provide OpenGL implementation details.

Keywords
Bump mapping, texturing, per-pixel lighting, register combiners, GeForce 256, Quadro, OpenGL.

1 INTRODUCTION
Video games use texture-mapping hardware to generate inter-
active computer-generated imagery with astounding levels of
per-pixel detail, yet conventional hardware texture mapping
does not give rendered surfaces a “textured” feel in the every-
day sense of the term. Conventional hardware texture mapping
gives polygonal models a colorful yet flat appearance. Even
when textured models are augmented by per-vertex lighting
computations, polygonal flatness is still evident. The problem
is that what computer graphics practitioners call texture is not
what people mean by the word texture in everyday usage.

In everyday usage the word “texture” refers to bumps, wrinkles,
grooves, or other irregularities on surfaces. The computer
graphics notion of a texture is more akin to the everyday notion
of a decal. In the everyday world, we recognize bumpy surfaces
because of the way light interacts with the surface irregulari-
ties. In a strict sense, these bumps and irregularities are part of
the complete geometric form of everyday objects, but in a
looser sense, the scale of these irregularities is quite small
relative the overall geometric form of the object. This is the

reason that people are comfortable calling a stucco wall “flat”
despite its stucco texture and consider a golf ball “round” de-
spite its dimples.

To capture the everyday sense of texture, computer graphics
practitioners use an extension of texture mapping known as
bump mapping. Blinn invented bump mapping in 1978 [4].
Bump mapping is a texture-based rendering approach for
simulating lighting effects caused by patterned irregularities on
otherwise locally smooth surfaces. By encoding such surface
patterns in texture maps, bump mapping simulates a surface’s
irregular lighting appearance without the complexity and
expense of modeling the patterns as true geometric perturba-
tions to the surface.

Rendering bumpy surfaces as actual geometric perturbations is
just too computationally expensive and data intensive.
Moreover, the scale of the minute geometric displacements is
typically less than the discrete pixel resolution used for ren-
dering which leads to aliasing issues. Bump mapping is a more
efficient approach because it decouples the texture-based
description of small-scale surface irregularities used for per-

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

2

pixel lighting computations from the vertex-based description
of large-scale object shape required for efficient transformation,
rasterization, and hidden surface removal.

Still the computations required for bump mapping as originally
formulated by Blinn are considerably more expensive than
those required for conventional hardware texture mapping.
Many attempts have been made over the last two decades to
reformulate bump mapping into a form suitable for hardware
implementation. In general, these attempts suffer from various
and often serious limitations.

This paper describes a new practical and robust bump-mapping
technique suited to NVIDIA’s current generation Graphics
Processing Units (GPUs). This paper also compares and
contrasts the new technique with other hardware bump map-
ping techniques described in the literature.

This paper has six sections. After this introduction, the second
section presents the mathematics of bump mapping. The third
section reviews several hardware bump-mapping techniques
described in the literature. The fourth section describes the
cube map texturing and “register combiners” features of
NVIDIA’s GeForce 256 and Quadro GPUs. These features in
combination with multitexturing are the basis for the bump
mapping technique presented in the fifth section. This tech-
nique achieves real-time performance on NVIDIA GPUs. The
technique can model ambient, diffuse, and specular lighting
terms, a textured surface decal, and attenuated and spotlight
illumination. The technique supports both a locally positioned
light and a local viewer model. The technique is notable
because of its robustness and relative fidelity to Blinn’s origi-
nal mathematical formulation of bump mapping. The sixth
section concludes. Several appendices provide OpenGL
implementation details.

2 BUMP MAPPING MATHEMATICS
Bump mapping is divided into two tasks. First, a perturbed
surface normal is computed. Then, a lighting computation is
performed using the perturbed normal.

These two tasks must be performed at each and every visible
fragment of a bump-mapped surface. Because we desire a
hardware solution that runs at real-time rates, computational
efficiency is an imperative.

2.1 Classic Height Field Bump Mapping
The classic formulation of bump mapping developed by Blinn
computes perturbed surface normals for a parametric surface as
if a height field displaced the surface in the direction of the
unperturbed surface normal. The surface, without any actual
displacement, is then rendered and illuminated based on the
perturbed surface normals. These computations are performed
at each and every visible pixel on the surface.

The discussion in this and the next two subsections restates
Blinn’s classic motivation for bump mapping [4].

Assume a surface is defined by a bivariate vector function
P(u,v) that generates 3D points (x,y,z) on the surface. (A bi-
variate vector function is a function of two variables where the
result is a vector. A 2D texture map containing colors
represented as RGB triples is one example of a bivariate vector
function.) The surface normal for a point on P is defined as

v

vu

u

vu
vu

∂
∂

×
∂

∂
=

),(),(
),(

PP
N

Equation 1

A second bivariate scalar function F(u,v) defines displacement
magnitudes from the surface P(u,v). The displacement direc-
tion is determined by normalizing N(u,v). F can be interpreted
geometrically as a height field that displaces the surface P.
Together, P and F define a new displaced surface P'(u,v) as
shown in Figure 1 and defined as follows

),(

),(
),(),(),('

vu

vu
vuFvuvu

N
N

PP +=

The surface normal for a point on P' is defined as

v

vu

u

vu
vu

∂
∂

×
∂

∂
=

),('),('
),('

PP
N

Equation 2

Expanding these partial derivatives of P' with the chain rule
results in

 ∂
+

∂
∂

+
∂
∂

=
∂
∂

∂u
F

u

F

uu
||' N

N

N
NPP

Equation 3

 ∂
+

∂
∂

+
∂
∂

=
∂
∂

∂v
F

v

F

vv

||' N
N

N
NPP

Equation 4

surface P
 height field F

perturbed surface P’

Figure 1. A surface perturbed by a height field makes a
bumpy surface.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

3

In the context of bump mapping, F represents the bumpiness of
the surface. This bumpiness can be considered micro-
displacements that are negligible relative to the overall scale of
the surface P. So assuming the magnitude of F is negligible,
the rightmost term in both Equation 3 and Equation 4 can be
approximated by zero. Note that even if F itself is negligible,
the partial derivatives of F are significant.

Expanding the cross product in Equation 2 gives the following
expression for N'

`

∂
∂

+
∂
∂

×

∂
∂

+
∂
∂

=
N
NP

N
NP

N'
v

F

vu

F

u

which evaluates to

2

)(

N

NN

N

N
P

N

P
N

PP
N'

×
∂
∂

∂
∂

+

 ×

∂
∂

∂
∂

+

∂
∂×

∂
∂

+
∂
∂

×
∂
∂

= v
F

u
F

uv
F

vu
F

vu

The first term is just N based on Equation 1. The last term is
zero because N×N=0. Therefore, N' simplifies to

N

P
N

P
N

NN'

∂
∂

×
∂
∂

−

∂
∂

×
∂
∂

+= uv
F

vu
F

Equation 5

When analytical partial derivatives are not available for P and
F, the partial derivatives in Equation 5 can be approximated
using finite differences.

Equation 5 computes the perturbed surface normal required for
bump mapping, but the computations required are too expen-
sive for direct per-fragment evaluation at hardware rendering
rates. Additionally, the normal vector as used in lighting equa-
tions must be normalized, so N' requires normalization. More
efficient approaches to compute normalized N' are required.

Blinn gives two different geometric interpretations of N'.
These two interpretations lead to two different ways to repre-

sent normal perturbations in a bump map. Blinn’s first inter-
pretation leads to encoding bump maps as offset vectors.
Blinn’s second interpretation leads to encoding bump maps as
vector rotations. These two interpretations serve as the basis
for a wide variety of bump-mapping techniques.

2.2 Offset Vector Bump Maps
Blinn’s first geometric interpretation of Equation 5 notes that
N' can be viewed as N offset by a vector D. That is

DNN' +=

Equation 6

where

N

P
N

P
N

D

∂
∂

×
∂
∂

−

∂
∂

×
∂
∂

= uv

F

vu

F

Equation 7

Blinn gives a geometric interpretation of D. The two vectors
N×∂P/∂v and N×∂P/∂u reside in the tangent plane of the
surface. Scaling each vector by an amount proportional to the u
and v partial derivatives of F and adding the two vectors pro-
duces D. The vector D plus the unperturbed vector N produce
N'. This interpretation is shown in Figure 2.

This implies that another way to represent a bump map in ad-
dition to a height field is to store the offset vector function
D(u,v). A bump map texture that represents normal perturba-
tions this way is called an offset vector bump map or simply an
offset map.

2.3 Vector Rotation Bump Maps
Blinn’s second geometric interpretation of Equation 5 treats the
normal perturbation as vector rotation. N' can be generated by
rotating N along an axis in the tangent plane of the surface.
This axis vector is the cross product of N' and N. Because N,
N', and D are all in the same plane

DND)(NNN'N ×=+×=×
Expanding D in the N×D expression above using Equation 7
leads to

N

N' ∂P/∂v

∂P/∂u

N × ∂P/∂v

N × ∂P/∂u

D -∂F/∂v

∂F/∂u

Figure 2. Interpreting a perturbation as an offset vector.

D
N’ N

∂P/∂v

∂P/∂u

A
∂F/∂v

-∂F/∂u
θθ

Figure 3. Interpreting a perturbation as a rotation.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

4

N

P
NN

P
NN

NN

∂
∂××

∂
∂−

∂
∂××

∂
∂

=×
uv

F

vu

F

'

This can be rewritten using the vector identity Q×(R×S) =
R(Q•S) – S(Q•R) and the facts that N•∂P/∂v = N•∂P/∂u = 0
because of Equation 1 and that N•N=|N|2. The simplifications
lead to

AN
PP

NN'N =

∂
∂

∂
∂

−
∂
∂

∂
∂

=×
vu

F

uv

F

Equation 8

where

vu

F

uv

F

∂
∂

∂
∂

−
∂
∂

∂
∂

=
PP

A

The vector A is perpendicular to the gradient vector of F, i.e.
(∂F/∂u, ∂F/∂v), when expressed in the tangent plane coordinate
system with basis vectors ∂P/∂v and ∂P/∂u. This means A acts
as an axis that tips N “downhill” due to the sloping (i.e., the
gradient) of F. So the perturbed surface normal N' is the result
of a rotation around the A axis.

The next task is to determine the angle of rotation. Since
|N|A= N×D by Equation 8 and N is perpendicular to D then

DNDN =×

So Equation 8 implies that

AD =

By noting that N, D, and N' form a right triangle, the angle of
the perturbation rotation around A is θ where

A

N

D

N
==)tan(θ

This is illustrated in Figure 3.

So in addition to height fields and offset vector maps, a third
way to store a bump map is encoding normal perturbations as a
(u,v) map of vector rotations. Euler angles, 3x3 rotation
matrices, and quaternions are all reasonable representations for
vector rotations. A bump map texture that represents normal
perturbations this way is called a normal perturbation map or
simply a normal map.

If R(u,v) is such a normal perturbation map, then

),R(),(
'

vuvu ⊗= N
N
N

Equation 9

After a perturbed normal is computed for a given fragment, the
perturbed normal and other lighting parameters are fed to a per-
fragment lighting model.

Because rotations do not change the length of a vector, one
consequence of Equation 9 is that the resulting normal is nor-
malized and therefore immediately usable in lighting computa-
tions.

2.4 Bumped Diffuse Lighting
Diffuse lighting interactions are typically modeled with a
lighting model based on Lambert’s law. This pseudo-law says
that surfaces uniformly reflect incident light. The perceived
intensity of a surface that obeys Lambert’s law and that is illu-
minated by a single point light source is computed as

),0max(NL •+= kII diffuseambientlambert

Equation 10

Iambient is the ambient perceived intensity, kdiffuse is the percent-
age of reflected diffuse light, L is the normalized light vector
and N is the normalized surface normal vector.

When discussing lighting equations, the vectors discussed are
assumed to be normalized unless otherwise noted.

The subexpression max(0,L•N) forces the light’s perceived
diffuse intensity to zero if L•N is negative. This clamping
corresponds to the situation when the light and the viewer are
on opposite sides of the surface tangent plane. This is shown in
Figure 4-A. In this situation, the point on the surface is said to
“self shadow.” Clamping also avoids the nonsensical contribu-
tion of negative reflected light.

2.4.1 Bumped Diffuse Self-shadowing
When bump mapping, there are really two surface normals that
should be considered for lighting. The unperturbed normal N
is based on the surface’s large-scale modeled geometry while

L1

N

L2
self-shadowed

L1 • N > 0
L2 • N < 0

N N’

L

L • N’ > 0
L • N < 0

self-shadowed due
to N but not N’

A)

B)

Figure 4. Self-shadowing situations.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

5

the perturbed N' is based on the surface’s small-scale micro-
structure.

Either normal can create self-shadowing situations. Figure 4-B
shows a situation where the perturbed normal is subject to
illumination based the light direction, i.e. when L•N' is posi-
tive. However, the point on the surface arguably should not
receive illumination from the light because the unperturbed
normal indicates the point is self-shadowed due to the surface’s
large-scale geometry.

To account for self-shadowing due to either the perturbed or
unperturbed surface normal, Equation 10 can be rewritten as

)',0max(NL •+= selfdiffuseambientlambert
skII

Equation 11

where

0,0

0,1

≤•
>•

=
NL

NL
selfs

Without this extra level of clamping, bump-mapped surfaces
can show illumination in regions of the surface that should be
self-shadowed based on the vertex-specified geometry of the
model.

In practice, the step function definition of sself shown above
leads to temporal aliasing artifacts. During animation, pixels
along the geometric self-shadowing boundary of bump-mapped
surfaces may pop on and wink off abruptly. Modifying sself to
make a less abrupt transition can minimize this aliasing arti-
fact. For example:

0

0

,0

),(1
,1

≤•
≤•<

>•
•=

NL

NL

NL

NL c

c

csself

Equation 12

This version of sself uses a steep linear ramp to transition
between 0 and 1. When c=0.125, this modified sself is effective
at minimizing popping and winking artifacts and is straightfor-
ward for hardware implementation.

2.4.2 Bump Map Filtering for Diffuse Lighting
Keep in mind that Equation 11 assumes that the L and N'
vectors are normalized to unit length. The equation also
assumes a single unperturbed normal and a single perturbed
surface normal. In practice, a pixel’s bump map footprint
covers a region of the bump map. Assuming a discrete bump
map representation, the pixel’s intensity should be an average
of Equation 11 over the collection of perturbed normals within
the pixel’s bump map footprint. Assuming a discrete collection
of n perturbed normals within a given pixel footprint and equal
weighting of the samples, Equation 11 becomes

()∑
=

•+=
n

i
iselfdiffuseambientlambert sk

n
II

1

),0max(
1

N'L

Equation 13

In conventional texture mapping, pre-filtering of the discrete
samples within a texture map is applicable because the
texture’s color contribution can be factored out of the shading
computation. Such an approach is not immediately applicable
to Equation 11 because the subexpression max(0,L•N') is not a
linear expression.

Unfortunately, direct application of Equation 13 is impractical
for interactive hardware rendering so some pre-filtering scheme
for bump maps is required.

The reason that the subexpression max(0,L•N') cannot be fac-
tored out is solely due to the self-shadow clamping. If we
simply ignore self-shadow clamping and assume that L and sself

are uniform over the pixel’s footprint in bump map space, then

•=• ∑∑

==

n

i
iselfdiffuseiself

n

i
diffuse n

sksK
n 11

1
)(

1
N'LN'L

Assuming that L and sself are uniform implies that N is uniform.
Hardware renderers only have a single N vector available per-
pixel because N is interpolated at pixel resolution so assuming
that N is uniform over a pixel is a practical assumption. L can
also assumed to be uniform over the pixel if the light is direc-
tional. Even in the case of a positional light, the light would
have to be extremely close to the surface for L to vary signifi-
cantly.

Arguably self-shadowing of individual perturbed normals can
be safely ignored under many circumstances if we simply clamp
to zero the dot product of L with the averaged N'. This
assumption correctly handles two very important cases. These
two cases are when all and when none of the perturbed normals
are self-shadowed. A situation where the assumption is very
poor requires an extreme distribution of perturbed surface nor-
mals that is unlikely if N' is generated from a height field with
adequate resolution.

Appreciating the assumptions suggested above, a reasonable
bump map pre-filtering scheme for a diffuse lighting model is

∑
=

=
n

i
ifiltered n 1

1
N'N'

Equation 14

Then the perceived intensity of the surface is computed as

),0max(filteredselfdiffuseambientlambert
skII N'L •+=

Equation 15

Equation 15 matches Equation 11 except that N' is replaced by
N'filtered. Note that N'filtered is not generally normalized. Re-
normalizing N'filtered might seem reasonable and has been sug-
gested in the literature [21], but not renormalizing when com-

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

6

puting a surface’s perceived diffuse intensity is actually more
correct.

Consider the dimpled surface of a golf ball viewed from a dis-
tance (assume golf balls are Lambertian for a moment). Also
consider a smooth Lambertian ball of the same size viewed
from the same distance. Due to its dimpled surface, the per-
ceived intensity of the golf ball should be dimmer than the per-
ceived intensity of the smooth ball.

The brute force filtering in Equation 13 correctly models this
dimming of bumpy diffuse surfaces. A robust bump map pre-
filtering scheme should also reproduce this effect.

So consider what happens when Equation 14 is used to filter a
bump map. If the bump map is indeed “bumpy,” a filtered
collection of sampled perturbed normals will point in varying
directions though all will be unit length. Averaging these
varied normals produces a vector with a length that must be
less than one. Similarly, consider what happens when Equation
14 is used to filter a “flat” bump map. A flat bump map
implies that N=N'=N'filtered so N'filtered is unit length every-
where.

Under otherwise identical circumstances, the filtered “bumpy”
bump map correctly produces a dimmer perceived intensity
than the filtered “flat” bump map.

Note that if N'filtered is renormalized then bumpy diffuse
surfaces incorrectly appear too bright.

This result suggests that linear averaging of normalized
perturbed normals is a reasonable filtering approach for the
purpose of diffuse illumination. It also suggests that if bump
maps are represented as perturbed normal maps then such
normal maps can be reasonably filtered with conventional
linear-mipmap-linear texturing hardware when used for diffuse
lighting.

2.5 Bumped Specular Lighting
Bump-mapped specular lighting interactions are typically
modeled with either the Blinn or Phong lighting models. Both
are empirical models.

The Blinn model [3] for a single point light source is

shininess
selfspecular

diffuse

ambientambient

sk

k

II

),0max(

),0max(

NH

NL

•+

•+
=

Equation 16

where H is the half-angle vector defined as

VL
VL

H
+
+

=

V is the normalized view vector (the vector from the surface
position to the eye position).

The Phong model [20] for a single point light source is

shininess

selfspecular

diffuse

ambientambient

sk

k

II

•+

•+
=

R
R

L

NL

,0max

),0max(

Equation 17

where R is the reflected view vector defined as

)(2 VNNVR •−= T

Equation 18

Both models assume the vectors N, L, and V are normalized.
Both models use exponentiation by a shininess exponent to
model specular highlights. Both models use sself to avoid the
specular contribution from contribution when the light is self-
shadowed.

2.5.1 Blinn Bumped Specular Lighting
Blinn’s original bump-mapping scheme assumes the Blinn
lighting model. The Blinn model is both less expensive to
compute and more physically plausible than the Phong model.
Moreover, the half-angle vector is independent of N so substi-
tuting a perturbed normal N' into the lighting model is straight-
forward.

The Blinn lighting model assumes that N (or N' when bump
mapping) is normalized. For this reason, the Blinn model
works well in conjunction with a bump map encoded as a
normal map because such maps generate normalized perturbed
normals (the rotation of a normalized vector remains normal-
ized). However, using the Blinn model with an offset map
requires a per-pixel renormalization.

The Blinn model similarly assumes that L and H are normal-
ized per-pixel.

When computing H•N', arguably for self-shadowing reasons,
the specular contribution should be forced to zero if the specu-
lar contribution computed with the unperturbed normal, i.e.
H•N, goes negative. This effect can be folded into the specular
version of the sself term for Equation 16.

2.5.2 Phong Bumped Specular Lighting
The Phong model has several interesting advantages despite its
additional complexity. The reflection vector R is a function of
the surface normal so the Phong model requires a per-pixel
reflection vector computation. However, once the reflection
vector is computed, it can be used to access a cube map texture
encoding the specular illumination.

Accessing a cube map has three noteworthy advantages. First,
the cube map avoids the need to renormalize R per-pixel.
Second, the exponentiation can be encoded into the cube map.
Moreover, the object’s filtered environment can be encoded
into the cube map to support so-called “bumped environment
mapping.” Third, as noted by Voorhies [27], the normal vector

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

7

N need not be normalized if Equation 18 is rewritten to multi-
ply both terms by the length of the unnormalized normal vector
squared. R then can be computed as

)(2)(VNNNNVR •−•= T

where N is not necessarily normalized. This approach works
well when the bump map is encoded as an offset map because
such maps do not guarantee normalized perturbed normals
(refer back to Equation 6).

The advantages of the Phong model for bump mapping should
not be overstated though. The technique requires a bump map
texture access and a subsequent dependent cube map texture
access. When implemented in hardware, expensive latency
fifos are needed to effectively hide the memory latency of the
second dependent texture access. Because the perturbed
normals and the specular cube map will not be oriented in the
same coordinate system, a normal coordinate system transfor-
mation is required. Ideally, this transform should be updated
per-pixel to avoid artifacts. The specular cube map assumes
the specular illumination comes from an infinite environment.
This means local lights, attenuation, and spotlight effects are
not possible though an unlimited number of directional light
sources can be encoded into a specular cube map. Good pre-
filtering of a specular cube map, particularly for dull surfaces,
is expensive. Likewise, changing the lighting configuration or
environment requires regenerating the cube map. Each mate-
rial with a unique shininess exponent requires a differently pre-
filtered specular cube map. Saving the expense of renormali-
zation of the perturbed normal is only a true advantage if the
diffuse illumination can also be computed with an unnormal-
ized perturbed normal too. The obvious way to accomplish this
is with a second diffuse cube map, particularly if the specular
cube map encodes multiple directional lights. Unfortunately, a
diffuse cube map requires an additional dependent cube map
texture fetch unit or requires a second rendering pass.

2.5.3 Bump Map Filtering for Specular Lighting
Both models compute the diffuse contribution based on a
Lambertian model identical to the previous subsection. There-
fore, the previous analysis to justify pre-filtering of perturbed
normals for the diffuse contribution still applies.

However, the exponentiation in the specular contribution
makes a similar attempt to factor L outside the specular dot
product rather dubious. Assuming a discrete collection of n
perturbed normals within a given pixel footprint and equal
weighting of the samples, the perceived specular intensity
should be

()∑
=

•=
n

i

shininess
ispecular NH

n
I

1

,0max
1

Equation 19

The conventional interpretation of the exponentiation is that it
models an isotropic Gaussian micro-distribution of normals.
The exponent is often referred to as a measure of the surface’s
roughness or shininess. In the context of bump mapping, this

supposes some statistical bumpiness on a scale smaller than
even the bump map.

Fournier [10] proposed a pre-filtering method for normal maps
that substitutes a small set of “Phong peaks” from a larger
sample of perturbed normals to be filtered. The perceived
specular contribution is then approximated as a weighted sum
of the smaller number of Phong peaks. The approximation is

() ()∑∑
==

•≅•
m

j

e

jj

n

i

shininess
i

jw
n 11

max,0max
1

NHNH

Equation 20

where m is the number of Phong peaks, wj is the weighting for
peak j, Nj is the normalized direction of peak j, and ej is the
exponent for peak j. Fournier suggests fitting the Phong peaks
using an expensive non-linear least-squares approach.

Fournier’s approach is poorly suited for hardware implementa-
tion. Each peak consists of at least four parameters: a weight,
an exponent, and a direction (θ,φ). Fournier also suggests that
as many as seven peaks may be required for adequate recon-
struction and multiple sets of peaks may need to be averaged
for each pixel.

Schilling [23] presented another approach that is more amena-
ble to hardware implementation yet still out of reach for today’s
available hardware resources. Schilling proposes the construc-
tion of a roughness map that encodes the statistical covariance
of perturbed normals within a given pixel footprint. Schilling’s
approach proposes a considerably more tractable representation
of the normal distribution than Fournier’s more expensive and
comprehensive approach.

The covariance provides enough information to model aniso-
tropic reflection effects. During rendering, information from
the roughness map is used for anisotropic filtering of a specular
cube map or as inputs to a modified Blinn lighting model. A
more compact roughness scheme is possible by limiting the
roughness map to isotropic roughness.

Without a tractable approach to pre-filtering bump maps for
specular illumination given today’s available hardware
resources, we are left with few options. One tractable though
still expensive option is simply to apply Equation 19 for some
fixed number of samples using multiple passes, perhaps using
an accumulation buffer to accumulate and weight each distinct
perturbed normal’s specular contribution.

With no more effective option available, we again consider pre-
filtering the bump map by simply averaging the perturbed
normals within each pixel’s footprint and renormalizing. This
is precisely what we decided was incorrect for diffuse
illumination, but in the case of specular illumination,
evaluating Equation 16 or Equation 17 without a normalized
normal is something to be avoided to have any chance of a
bright specular highlight. We can at least observe that this
approach is the degenerate case of Equation 20 where m equals
1 though there is no guarantee that the average perturbed
normal is a remotely reasonable reconstruction of the true
distribution of normals.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

8

The single good thing about this approach is that there is an
opportunity for sharing the same bump map encoding between
the diffuse and specular illumination computations. The
diffuse computation assumes an averaged perturbed normal that
is not normalized while the specular computation requires the
same normal normalized. Both needs are met by storing the
normalized perturbed normal and a descaling factor. The
specular computation uses the normalized normal directly while
the diffuse computation uses the normalized normal but then
fixes the diffuse illumination by multiplying by the descaling
factor to get back to the unnormalized vector needed for
computing the proper diffuse illumination. If N'filtered is
computed according to Equation 14, then the normalized
version is

filtered

filtered

N'

N'

and the descaling factor is simply the length of N'filtered.

2.6 Bump Map Representations
So far, we have discussed three distinct representations of
bump maps but have not been very concrete with how each
bump map representation is stored as a texture map. The three
representations are height fields, offset maps, and normal
maps. Each representation corresponds to one of the three
equations developed previously for computing a perturbed
surface normal. Height fields are used with Equation 5. Offset
maps are used with Equation 6. Normal maps are used with
Equation 9.

2.6.1 Height Fields
This is the most straightforward representation and one that is
fairly easy to author. A height field bump map corresponds to a
one-component texture map discretely encoding the bivariate
function F(u,v) described in Section 2.1.

Painting a gray-scale image with a 2D-paint program is one
way to author height fields. Rendering bumpy surface with
geometry and then reading back the resultant Z values from a
depth buffer is another means to generate height fields.

Equation 5 actually uses the partial derivatives of F rather than
F directly. Finite differencing can approximate these partial
derivatives. This bump mapping approach is called texture
embossing and is further described in Section 3.1.

2.6.2 Vector Offset Maps
Instead of computing the partial derivatives at rendering time,
an offset map is constructed by pre-computing the derivatives
from a height field and then encoding the derivatives in a tex-
ture map.

This corresponds to encoding D(u,v) from Equation 7 into a
texture. In general D is a 3D vector, but because D is orthogo-
nal to N, an offset map can be encoded as a two-component
texture if we assume some way to orient D with respect to N.
Typically ∂P/∂u is used to orient D. When used to orient D,
the normalized version of ∂P/∂u is called the tangent vector
and here labeled Tn.

Lighting results can be computed in an arbitrary 3D coordinate
system as long as all the vector parameters involved are
oriented with respect to the same single coordinate system.
This freedom allows us to select the most convenient coordi-
nate system for lighting. Tangent space is just such a local
coordinate system. The orthonormal basis for the tangent space
is the normalized unperturbed surface normal Nn, the tangent
vector Tn defined by normalizing ∂P/∂u, and the binormal Bn

defined as Nn×Tn. The orthonormal basis for a coordinate
system is also sometimes called the reference frame.

As will be demonstrated, it is convenient to rewrite D in
tangent space. Equation 7 can be simplified by writing it in
terms of Nn and Bn so that

nn uv

F

vu

F
B

PP
ND

∂
∂

∂
∂

−

∂
∂

×
∂
∂

=

Equation 21

As observed by Peercy [21], ∂P/∂v is in the plane of the tangent
and binormal by construction so ∂P/∂v can be expressed as

nnnn vvv
B

P
BT

P
T

P

∂
∂

•+

∂
∂

•=
∂
∂

Therefore

nnnnn vvv
T

P
BB

P
T

P
N

∂
∂

•−

∂
∂

•=
∂
∂

×

because Bn = Nn × Tn and -Tn = Nn × Bn.

By substituting this result into Equation 21, D becomes

nnnnn uv

F

vvu

F
B

P
T

P
BB

P
TD

∂
∂

∂
∂−

∂
∂•−

∂
∂•

∂
∂=

Equation 22

This expresses D in a form not explicitly dependent on Nn.
Because D is expressed in tangent space, we can assign a
convenient orientation to Nn, Tn, and Bn such as Tn=[1,0,0],
Bn=[0,1,0], and Nn=[0,0,1]. This makes is it very simple to
compute N' in tangent space:

[] []cbac ,D0,0,DNN' ,=+=+=

Equation 23

where

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

9

vu
c

uv

F

vu

F
b

vu

F
a

n

n

∂
∂

×
∂
∂

=

∂
∂

∂
∂

−

∂
∂

•
∂
∂

=

∂
∂

•
∂
∂

−=

PP

PP
T

P
B

Equation 24

Instead of having to encode D as a 3D vector requiring a three-
component texture, this results means that the values of a and
b can be encoded in a two-component offset map. The value of
c is independent of the height field F and therefore does not
need to be stored in the bump map. Instead c must be supplied
from the surface parameterization during rendering. Often
however c is assumed constant over the surface as will be
developed below.

This new form of D is still inconvenient because D is still
dependent on the surface partial derivatives. This dependency
means that the bump map texture is still effectively tied to the
surface parameterization. This dependency means that, in gen-
eral, the encoding of the bump map cannot be decoupled from
the surface. This makes it difficult to author a single bump
map texture that can be applied to multiple objects. In princi-
ple, this requires a unique bump map texture for each distinct
bump-mapped surface even when the surfaces share the same
height field. Texture memory is typically a limited resource so
it is very desirable to break this dependency.

As suggested by Peercy [21], if we are willing to make some
assumptions about the nature of the parameterization of the
surface P and work in tangent space, we can remove the
dependency of D on the surface parameterization. Consider
when the surface parameterization is locally that of a square
patch. This implies that ∂P/∂u and ∂P/∂v are orthogonal. This
means that ∂P/∂u•∂P/∂v = Tn•∂P/∂v = 0 and that ∂P/∂u and
∂P/∂v are equal in magnitude, i.e. |∂P/∂u | = |∂P/∂v|.
Fortunately, this assumption is acceptable for many important
surfaces such as flat polygons, spheres, tori, and surfaces of
revolution.

By making the square patch assumption, D can be further
simplified. Based on the square patch assumption, Equation 22
becomes

nn k
v
F

k
u
F

BTD
∂
∂−

∂
∂−=

where

vu
k

∂
∂

=
∂
∂

=
PP

and then Equation 24 can be rewritten as

1

1

1

=
∂
∂

−=

∂
∂

−=

c
kv

F
b

ku

F
a

Equation 25

If offset maps are used this way for bump mapping, the prob-
lem remains that N' is not normalized. As described in Section
2.5.2, this is not an issue if the diffuse and specular contribu-
tions are computed using a cube map texture. However, cube
map textures cannot be reasonably oriented in tangent space
because tangent space varies over the surface so the tangent
space N' must be transformed by a rotation into the cube map’s
coordinate system (typically, world space).

Because the normal component of D in tangent space is zero, a
2x3 matrix is sufficient to rotate D. Given an unperturbed
normal vector oriented in the cube map’s coordinate system,
the perturbed normal is computed as

2120

1110

0100

' AANN

AANN'

AANN'

ba

ba

ba

zz

yy

xx

++=

++=
++=

Equation 26

Though the matrix A is constant in the case of a flat plane, A
varies over a curved surface because tangent space on a curved
surface varies over the surface. Ideally, the rotation matrix
should be updated per-pixel and be scale-invariant so as not to
change the length of D.

Based on the discussion so far, ∂F/∂u and ∂F/∂v are encoded
directly within an offset map. These differentials are signed
values so the texture filtering hardware must be capable of
filtering signed values to support offset maps.

Additionally, the differentials may vary over a potentially un-
bounded range, particularly when very steep bump maps are
encoded. In general, hardware texture formats typically have a
limited range, perhaps negative one to positive one for signed
textures. Given the existence of the matrix A, one way to cope
with the potentially unbounded range of differentials is to
compose the rotation in Equation 26 with a uniform scale that
extends the effective range of the offset map. This combined
transform can then be loaded into the matrix A described
above. The scale required varies depending on the maximum
differential stored in any given offset map.

All this suggests that a signed two-component offset map with
limited range is reasonable to support bump mapping using
offset maps. Yet to account for reasonable pre-filtering for
diffuse illumination as described in Section 2.4.2, an additional
unsigned component should also be provided to store the
average perturbed normal length when pre-filtering an offset
map. In a bump-mapping scheme using diffuse cube maps, this
additional component should be modulated with the diffuse

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

10

cube map result. Otherwise, distant or small diffuse bump-
mapped surfaces will appear too bright.

2.6.3 Normal Perturbation Maps
Much of the mathematics used to develop the offset map also
applies to normal perturbation maps, particularly the concept of
tangent space. The main difference between the two
approaches is that normal maps encode rotations instead of
offsets. The primary advantage of using rotations is that then
the perturbed normal remains normalized.

Normal maps can be represented in a number of different
equivalent representations that all are simply different ways to
encode rotations. Quaternions, 3x3 matrices, and Euler angles
are all possibilities.

Consider representing rotations as 3x3 matrices. Then
Equation 9 can be rewritten more concretely as

[] []

=

222120

121110

020100

'''

RRR

RRR

RRR

zyxzyx NNNNNN

But this entire matrix multiply can be replaced with a direct
encoding of the perturbed vector if the computation is done in
tangent space! When N equals [0,0,1], then the above matrix
multiply simplifies to

[] []221202''' RRRzyx =NNN

This makes tangent space an extremely efficient coordinate
system for bump mapping computations.

The same mathematics developed in the previous section for
computing perturbed normals applies to normal maps except
that normal maps must renormalize the perturbed normal. The
perturbed normal in Equation 23 is not normalized, but renor-
malizing it results in

[]
222

,,
'

cba

cba
N n

++
=

Equation 27

Perturbed normals can be encoded using either the surface-
dependent [a,b,c] from Equation 24, or the surface-independent
[a,b,c] from Equation 25 by making the square patch assump-
tion.

This requires a signed three-component normal map. Each
component of the normal map is guaranteed to be within the
negative one to positive one range. To avoid hardware support
for signed texture filtering, the components can be “range-com-
pressed” into the zero to one range typical of conventional
texture hardware before download as part of the normal map
construction process. In this case, the range-compressed
perturbed normal is encoded as

2

1

2

),,(
'

222
+

++
=

cba

cba
N nc

Equation 28

After filtering when rendering, each range-compressed normal
is then expanded back to its true negative one to one range for
use in the lighting model.

When pre-filtering the three-component vector portion of the
pre-filtered normal map, each averaged vector should be
renormalized. This renormalized vector is used for computing
specular illumination.

In addition to the normalized three-component vector in the
normal map, an additional fourth component can store the un-
signed averaged normal length before renormalization. This is
simply

222' avgavgavglen cbaN ++=

After the diffuse dot product is computed, the diffuse illumina-
tion is then modulated by N'len. This prevents heavily filtered
diffuse surfaces from looking too bright.

When the range-compressed vector form is used, this four-
component normal map can be stored exactly like an 8-bit per
component conventional RGBA texture so existing texture
fetching and filtering hardware needs no modification for this
type of normal map.

3 PREVIOUS HARDWARE
APPROACHES

The various hardware bump-mapping implementations
described in the literature use different variations on the prin-
ciples presented in Section 2.

3.1 Texture Embossing
Texture embossing [22][24] is one of the simplest and most
limited formulations of bump mapping. The fact that the tech-
nique can be accelerated with minimal hardware support has
made texture embossing the basis for more than one hardware
vendor’s claim to support bump mapping “in hardware.”1 Un-
fortunately, texture embossing has a number of significant
limitations that limit the technique’s practical application.

Texture embossing uses a height field representation as
described in Section 2.6.1 for its bump map representation.
The height field for the surface to be bump mapped is stored in
a scalar texture. Texture embossing numerically determines
the partial differentials necessary for bump mapping from the
height field texture during rendering.

The bump-mapped diffuse lighting contribution requires com-
puting L•N'. Texture embossing assumes that L and N' are
oriented in tangent space (as developed in Section 2.6.2). Then
N' can be expressed as in Equation 23. For simplicity and to

1 NVIDIA’s claim that the RIVA TNT and TNT2 graphics chips

support hardware bump mapping is based on single-pass
hardware support for texture embossing.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

11

eliminate Equation 23’s dependency on the surface parameter-
ization, texture embossing makes the square patch assumption.
So by combining Equation 23 and Equation 25

∂
∂−

∂
∂−= 1

11
kv

F
ku

F
N'

Unfortunately, the N' above is not normalized, but if we
assume that N'x and N'y are small, then N' will be almost nor-
malized. We can assume that k is 1 if we scale the height field
appropriately. By making these two assumptions, the diffuse
computation becomes

v

F

u

F
yxz ∂

∂
−

∂
∂

−=• LLLN'L

Equation 29

The two terms with partial differentials can be approximated
numerically using finite differences from the height field. So

),(),(vvuuFvuF
v

F

u

F
yxyx ∆+∆+−≅

∂
∂−

∂
∂− LLLL

Equation 30

Evaluating Equation 30 requires differencing two height field
texture accesses. The height field texture resolution deter-
mines the ∆u and ∆v displacements. For example if the height
field is a 128x128 texture, then ∆u and ∆v are both 1/128,
enough to shift by exactly one texel in each direction. Scaling
by the light direction’s Lx and Lv components further reduces
these displacements. Bilinear filtering is required because the
technique relies on texture coordinate displacements less than
the scale of a texel.

The result of Equation 30 is a slope and therefore is a signed
quantity. Adding this signed quantity to Lz computes L•N'.

Some intuition for embossing can be gained by considering a
few basic scenarios. Consider the case of a flat height field. In
this case, F is constant. This means the finite difference of F is
always zero. Therefore N' = [0, 0, 1]. In this case, L•N' = Lz

by Equation 29.

In cases where the surface slopes towards the light, the finite
difference in Equation 30 will be positive and L•N' will
increase beyond Lz. Likewise, in cases where the surface
slopes away from the light, the finite difference will be nega-
tive and L•N' will decrease from Lz.

One case that does not work correctly is when the light direc-
tion matches the unperturbed surface normal. In this case, L =
[0, 0, 1]. Equation 30 is always zero in this case because Lx

and Lv are zero making the displacement always zero. The
value of L•N' is computed incorrectly as merely Lz. This
anomaly results from texture embossing’s failure to normalize
N'. In this situation, texture embossed surfaces look flat and
too bright. In general, the failure to normalize N' exaggerates
the diffuse lighting contribution.

The technique’s two height field texture accesses are well
suited for dual-texturing hardware. Extended texture environ-

ment functionality such as NVIDIA’s NV_texture_env_-
combine4 extension [17] can provide the signed math
operations to evaluate Equation 29. When dual-texturing
hardware is unavailable, texture embossing can be
implemented as a multi-pass algorithm using either subtractive
frame buffer blending or the accumulation buffer to perform the
necessary signed math.

Ideally, the texture coordinate displacements and Lz should be
computed per-pixel based on a normalized L. In practice, these
parameters are computed per-vertex and then linearly interpo-
lated per-pixel. When surfaces are tessellated coarsely relative
to the surface’s degree of curvature, linear interpolation will
produce objectionable artifacts due to the denormalization of L.
Typically, the CPU is responsible for computing the tangent
space vectors and texture coordinate displacements required for
texture embossing. The per-vertex math required for comput-
ing the texture coordinate displacements is however uniform
enough that it can be off-loaded to specialized per-vertex trans-
form hardware. The GeForce and Quadro GPUs provide such a
texture coordinate generation mode through the
NV_texgen_emboss extension [15] to support texture em-
bossing.

Texture embossing has several other issues. The basic
embossing algorithm does not account for bumped surfaces
facing away from the light direction. This is the situation when
Lz is negative. Unfortunately, the finite differencing result
from Equation 30 may be positive in this case, yet most hard-
ware clamps negative color values to zero so the positive
results from Equation 30 cannot be cancelled by the negative
Lz. Instead, such self-shadowed regions of the surfaces appear
incorrectly lit. One solution is to force the values of Lx and Ly

to zero at vertices where Lz is negative so Equation 30 must be
zero. This must be done with care to minimize transition arti-
facts.

Texture embossing does not interact well with mipmap filter-
ing. The texture displacements are scaled based on the height
field texture resolution. If ∆u and ∆v are 1/128 and 1/128 for
the base level 128x128 mipmap and mipmap filtering uses the
32x32 mipmap level, these displacements will be too small for
the finite differencing to approximate a meaningful differential.
Bumpy surfaces rendered with texture embossing and mipmap
filtering go flat when smaller level mipmaps are used. The
problem is that texture embossing is tied to a single height field

+y

-y

-z

+z

+x
-x

-1

-1

+1

+1 (3, 1.5, 0.9)

Figure 5. The unnormalized direction vector (3, 1.5, 0.9)
pierces the positive X face of the cube map and projects to

the 2D position (0.5, 0.3) on the face.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

12

scale. Without mipmap filtering, the technique results in
objectionable aliasing artifacts when mipmapping would
otherwise be helpful.

While texture embossing is well suited to today’s hardware
with dual textures and extended texture environment function-
ality, the technique suffers from several significant issues. The
technique is not robust and has failed to be adopted by applica-
tions beyond demos.

3.2 Dedicated Hardware Schemes
Graphics hardware researchers have proposed a variety of
approaches for implementing bump mapping through dedicated
hardware schemes. This section briefly reviews the literature
on other hardware bump mapping approaches.

Evans and Sutherland and SGI have both proposed bump-
mapping approaches for high-end 3D graphics hardware
[5][21]. Both approaches propose to support bump mapping in
the context of hardware that supports per-fragment lighting
operations. The SGI technique relies on lighting in tangent
space. The technique described in this paper borrows heavily
from SGI’s notion of tangent space.

Researchers at the German National Research Center for
Information Technology have described several approaches for
implementing hardware bump mapping. One of their
approaches referred to as Visa+ bump-mapping [1][6] uses
vector offset maps to encode the bump map perturbations and
uses two cube maps to determine the respective lighting diffuse
and Phong specular lighting contributions. This is the approach
critiqued earlier in Section 2.5.2.

Another approach developed by the same researchers is called
Gouraud bump mapping [7]. This approach bears some simi-
larities to the technique described in this paper. Both tech-
niques aim for a low-cost solution.

Microsoft includes a bump mapping mechanism in DirectX 6
called BumpEnv [19]. While the inference from the name is
that the mechanism supports environment-mapped bump map-
ping, the hardware functionality is really a fairly limited de-
pendent texture mechanism. Two sets of texture coordinates
are supported. When BumpEnv is in use, a 2D perturbation
texture is accessed using the first set of texture coordinates.
This fetch returns a signed perturbation (dx,dy). Then this
signed perturbation is added to the second set of texture coordi-
nates. A 2x2 matrix then transforms the perturbed texture
coordinates. Lastly, the perturbed and transformed texture
coordinates are used to access a second 2D texture containing
color data.

The BumpEnv mechanism’s claim to implement bump mapping
is somewhat tenuous. If the approach supported a 2x3 matrix
and accessed a cube map texture along the lines of Visa+
approach, the bump-mapping claim could be better justified.
As it exists today, the BumpEnv functionality can be consid-
ered a degenerate form of Visa+ bump mapping with only a
single cube map face instead of six faces of two fully populated
cube maps. This is not to say that BumpEnv is not useful.
Under limited conditions such as flat or relatively flat surfaces
with relatively small perturbations illuminated by only
directional lights (water outdoors for example), BumpEnv can
arguably accomplish bump mapping. However, many of
BumpEnv’s robustness issues are direct results of the corners
the approach cuts.

4 NVIDIA GPU FEATURES
The technique described in Section 5 heavily relies on two new
features supported by both the GeForce and Quadro GPUs.
This section introduces these new features. The first feature is
support for cube map textures. The second feature is a greatly

Point
Rasterization

Line
Rasterization

Polygon
Rasterization

Pixel Rectangle
Rasterization

Bitmap
Rasterization

Texture
Environment
Applic ati on

Texture Unit #0

Texture Unit #1

Color Sum

Fog
Coverage

Applic ati on

Texture
Fetchi ng

Register
Combiners

Final Stage

Stage #0

Stage #1

Per-fragment
operations

Figure 6. The data flow for register combiners and the standard OpenGL fragment coloring operations. The
register combiners enable selects between the two fragment coloring pipelines. This figure is based on Figure 3.1

from the OpenGL 1.2.1 specification [25].

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

13

extended fragment coloring mechanism called the register
combiners.

4.1 Cube Map Texturing
Cube map texturing is a form of texture mapping that uses an
unnormalized 3D direction vector (s,t,r) to access a texture that
consists of six square 2D images arranged like the faces of a
cube centered around a coordinate system origin.

Figure 5 shows how an unnormalized direction vector [3, 1.5,
0.9] is mapped to a 2D location on the correct cube map face.
First, the face that the vector pierces is determined. This is
accomplished by determining which of the vector’s components
has the largest magnitude. The greatest magnitude component
and its sign determine the pierced cube map face. There are
six possibilities, each corresponding to one of the six cube
faces: +x, −x, +y, −y, +z, and −z. In the case of [3, 1.5, 0.9], the
largest magnitude is the x component’s value 3.0. The
component is positive so the +x face is selected. Second, the
remaining two components are divided by the component of the
largest magnitude. This effectively projects these two
components onto the selected cube map face. Finally, the two
projected coordinates are scaled and biased depending on the
selected face to compute a 2D texture coordinate used to access
the texture image for the selected face. From this point on, the
2D texture coordinate is used to access the selected face’s
texture image just as if it was a standard 2D texture.

Cube map texturing hardware performs the face selection, pro-
jection, and scale and bias operations per-fragment to access
cube map textures. The most expensive operation in deter-
mining the projected 2D texture coordinate on a particular cube
map face because projection requires a divider. A similar per-
fragment division is required for perspective correct 2D
texturing. By reusing this single per-pixel divider for both 2D
texturing and cube map texturing, the additional required
hardware to support cube map texturing is nominal.

Both OpenGL and Direct3D support cube map texturing
through standard API interfaces. Direct3D added cube map
support with its DirectX 7 release. Direct3D and OpenGL
share the same arrangement of cube faces with each other and
Pixar’s RenderMan API.

Cube maps are more flexible than other hardware-accelerated
approaches for texturing based on direction vectors such as
sphere maps and dual-paraboloid maps [12]. While sphere
maps are view dependent, cube maps are view independent.
While dual-paraboloid maps are view independent too, dual-
paraboloid maps require two texture applications instead of the
single texture application required for cube maps. And both
sphere maps and dual-paraboloid maps require a non-linear
warping of a set of cube faces to construct the required
textures. Cube maps can obviously use cube face images
directly.

Cube map texturing is closely associated with environment
mapping [2][11][27] because the cube face images can capture
a complete omnidirectional view of the environment around a
point. However, environment mapping is just one application
of cube maps. The bump-mapping technique described in
Section 5 uses cube maps to perform per-fragment normaliza-
tion of interpolated light and half-angle vectors.

Further information about OpenGL programming of cube map
textures is found in Appendix A.

4.2 Register Combiners
The GeForce and Quadro register combiners functionality pro-
vides a configurable (but not programmable) means to deter-
mine per-pixel fragment coloring. When enabled, the register
combiners replace the standard OpenGL per-fragment texture
environment, color sum, and fog operations with a greatly
extended mechanism for coloring fragments. Figure 6 shows
this data flow.

general
combiner

stages

Alpha Portion RGB Portion

Stage #0

Stage #1

Final Combiner

RGBA
f ragment AB+(1-A)C+D, G

AB+CD, AB, CD

AB+CD, AB, CD

AB+CD, AB, CD

AB+CD, AB, CD

Figure 7. The data flow for register combiner stages.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

14

With multi-textured OpenGL, filtered texels from each texture
unit are combined with the fragment’s current color in sequen-
tial order. The color sum and fog stages immediately follow
the texture environment in a fixed sequence. The standard
fragment coloring mechanisms provided by both OpenGL and
Direct3D are not particularly flexible and limit the scope of
operations that can be performed on a given fragment.

The register combiners expose a sequence of general combiner
stages that terminate in a final combiner stage that outputs an
RGBA color for the fragment. The register combiners support
the following functionality:

• Multiple combiner inputs are available in each combiner
stage. All enabled textures, the primary (diffuse) and sec-
ondary (specular) colors, the fog color and factor, two con-
stant colors, and two spare inputs are available.

• Computations in each general combiner stage use a signed
numeric range from [-1,1] instead of an unsigned [0,1]
range.

• The numeric range of each input is mapped and possibly
clamped using one of eight distinct input mappings. These
input mappings provide conversions from unsigned to
signed numeric ranges, negation, half-biasing, and un-
signed inversion.

• The RGB and alpha portions are configured and processed
independently.

• Each general combiner stage outputs three distinct outputs
for both the RGB and alpha portions.

• Possible outputs are products of inputs, a sum of products
of inputs, 3-element vector dot products of RGB inputs, or
a mux of products of inputs.

• Each stage writes its outputs to a set of registers that be-
come the inputs for the subsequent stage. Unwritten
register values carry forward from one stage to the next.

• A special final combiner stage combines the final register
values into a final RGB and alpha result for each frag-
ment.

4.2.1 The Register Set
When fragment coloring via the register combiners begins for a
given fragment, a set of 4-element vector “registers” is
initialized with RGBA parameters. Some of the registers
contain varying parameters. These varying parameters are the
interpolated primary (diffuse) and secondary (specular) colors,
the filtered texels from enabled texture units, and the fog factor
(though the fog factor is only available for use in the final
combiner). These varying registers can be both written and
read as part of combiner operation.

Another set of registers is uninitialized but can also be both
written and read; these registers (called spare0 and spare1) are
intended as scratch registers. For reasons to be explained later,
the alpha portion of the spare0 register is actually initialized to
the alpha component of texture unit 0 if texture unit 0 is
enabled.

A final set of registers contains constants such as the RGB fog
color, the value zero, and two RGBA color constants. These
registers can be read by combiner operations but cannot be
written by combiner operations. However, the fog color and the
two constants can be specified by the application outside of
rendering.

4.2.2 General Combiner Stage Operation
The GeForce and Quadro GPUs support two general combiner
stages and a final combiner stage. Later NVIDIA GPUs will
support more general combiner stages. There is always a single

zero

pr imary

seco n da ry

co nstant 0

co nstant 1

fog

spare 1

spare 0

tex ture 0

tex ture 1

A B + C D

A B mu x C D

-o r -

A B

A • B

-o r -

C • D

C D
 -o r -

A

B

C

D

n o t w r iteable

RGB

A

RGB

A

inpu t reg i s t er s

c o mp u t a t i o n s

output regis ters

scale
and
bias

n o t r e ad ab l e

zero

pr imary

seco n da ry

co nstant 0

co nstant 1

fog

spare 1

spare 0

tex ture 0

tex ture 1

input
m a p

input
m a p

input
m a p

input
m a p

Figure 8. General combiner operation for the RGB portion of the combiner.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

15

final combiner. Figure 7 shows how the general combiner
stages proceed in sequence and terminate with the final combi-
ner stage emitting the fragment’s RGBA color.

All of the general combiner stages operate identically. Each
general stage has an RGB portion and an alpha portion. The
computations performed by the two portions of each stage are
similar except that computations on the RGB portion operate
on 3-element RGB vectors while computations on the alpha
portion operate on scalar values. One important difference
between the RGB and alpha portions is that the RGB portion
also can compute 3-element dot products.

Figure 8 and Figure 9 show the operation of the RGB and alpha
portions respectively of each general combiner.

Each portion of each general stage has four variables: A, B, C,
and D. The value of each variable is assigned from one of the
registers. The value for an RGB variable can be either the
RGB portion of a register or the alpha portion of a register
smeared into a vector. The value for an alpha variable can be
either the alpha portion of the register or the blue component of
the RGB portion of a register. Upon assignment, one of eight
input mappings is performed on the input value. These input
mappings can expand an unsigned value into a signed value,
half-bias, negate, or perform an unsigned invert on the input
value.

Once the values for A, B, C, and D are assigned for a given
portion of a particular stage, three output values are computed
based on the values of A, B, C, and D. These output values are
scaled and biased and then clamped to the [-1,1] range and
written back to distinct registers in the fragment’s register set.
The scale can be by one half, one, two, or four. The bias can be
by either negative one half or zero. The scale and bias are the
same for all outputs of a given portion of a general combiner
stage (so the RGB and alpha portions can each have a distinct

scale and bias). Each of the three outputs must be written to a
distinct register. Optionally, the value of any output can be
discarded without writing it to a register.

The first output value is either the product of A and B or the
dot product of A and B. The second output value is either the
product of C and D or the dot product of C and D. The product
outputs are scalar operations for the alpha portion and vector
operations for the RGB portion. The dot product outputs are
only possible for the RGB portion of a general combiner stage
(it only makes sense for vector data). The dot product result is
a scalar so it is smeared across RGB for output as an RGB
vector. The AB and CD product and dot product operations are
signed computations.

The third output is either AB+CD (where AB and CD are
products) or a mux (selection) between the AB and CD
products. The AB+CD operation is performs a signed addition.
The mux operation outputs the AB product if the alpha value of
the first spare register (called spare0) is less than 0.5 and
otherwise outputs the CD product. This use of spare0 alpha
value is why the spare0 register’s alpha value is initialized to
the texture unit 0’s alpha value if the texture unit is enabled.

Each portion of each general combiner stage can output up to
three values. So the RGB and alpha portions of each general
combiner stage can together output up to six values. With two
general combiner stages, there is the opportunity to compute up
to 12 per-fragment results with 4 possible dot products!

Once the outputs are written to the register set or discarded, the
next general combiner in the sequence operates the same way.
Any register values not written by a stage retain their values in
the subsequent stage.

The input variable assignments, input mappings, component
usage, output options, output registers, and output scale and

zero

pr imary

seco n da ry

co nstant 0

co nstant 1

fog

spare 1

spare 0

tex ture 0

tex ture 1

A B + C D

A B mu x C D

-o r -

A B

C D

A

B

C

D

not wri teable

RGB

A

RGB

A

inpu t reg i s t er s

c o mp u t a t i o n s

output regis ters

scale
and
bias

n o t r e a d a b l e

zero

pr imary

seco n da ry

co nstant 0

co nstant 1

fog

spare 1

spare 0

tex ture 0

tex ture 1

input
m a p

input
m a p

input
m a p

input
m a p

Figure 9. General combiner operation for the alpha portion of the combiner.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

16

bias can all be specified by the application for each portion of
each general stage.

4.2.3 Final Combiner Stage Operation
After the general combiners complete their operations, the
resulting register set is supplied to the final combiner to com-
pute the fragment’s final RGBA fragment color. Whereas the
result of general combiner stages is simply the updating of the
register set, the result of the final combiner is a single RGBA
value. Figure 10 shows the operation of the final combiner.

The final combiner computes an unsigned result using unsigned
inputs. Negative register values are clamped to zero before use
in the final combiner. The final combiner has six variables
used to compute the fragment’s RGB color: A, B, C, D, E, and
F. Each variable can input from any of the available registers.
Each input can be inverted and can use either the RGB or alpha
component of its input register. There are also two final com-
biner pseudo-registers that provide extra computations. The
EF product pseudo-register can supply the input for the A, B,
C, and D variables and evaluates to the product of the E and F
variables. The spare0+secondary color pseudo-register can
supply the B, C, and D variables and evaluates to the RGB
addition of the spare0 and secondary color registers.

The final combiner computes AB+(1-A)C+D to determine the
fragment’s RGB color. This is an RBG vector computation.
The application can control whether the spare0+secondary
color register clamps to 1.0 or not. When not clamped the
spare0+secondary color register ranges from 0.0 to 2.0.

A seventh variable G directly determines the fragment’s alpha
value. This variable can input from the alpha portion of any
register except the pseudo-registers. Optionally, the G input
can be inverted.

4.2.4 Practical Details
The register combiners functionality is exposed to applications
through the NV_register_combiners OpenGL extension.
There is no direct access to the register combiners through
Direct3D though an extension to Direct3D to expose the regis-
ter combiner functionality has been proposed.

The same hardware resources implement the register combiners
functionality and OpenGL and Direct3D’s existing fragment
coloring functionality. When using conventional OpenGL or
Direct3D fragment coloring, the 3D driver converts the API’s
conventional fragment coloring operations into an equivalent
register combiners configuration.

The number of active general combiners (1 or 2, possibly more
on future GPUs) can be controlled by the application. While
performance is hard to characterize completely and can change
from implementation to implementation, the GeForce and
Quadro GPUs can run at full pixel rate when a single general
combiner is active, but the peak pixel rate drops in half when
two general combiners are active. However, the GeForce and
Quadro GPUs similarly run at half rate when two linear-
mipmap-linear textures are enabled. This means that two gen-
eral combiners are “free” when two linear-mipmap-linear
textures are active because the two enabled textures already
cause the GPU to run at half rate. In practice, most cases when
two general combiners are required are also cases where two
textures are active.

Further information about OpenGL programming of register
combiners is found in Appendix B.

zero

pr imary
 secondary

constant 0
 constant 1

fog

sp are 1

sp are 0

text ure 0
 text ure 1

A

B

C

D

RGB

A

input registers

computations

A B + (1 - A) C + D

G

E F

E

F

G

max(0.0, spare 0)
+ max(0.0,
secondary)

fragment RGB out

fragment Alpha out

i npu t
map

i npu t
map

i npu t
map

i npu t
map

i npu t map

i npu t map

i npu t
map

Figure 10. Final combiner operation.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

17

5 A NEW BUMP-MAPPING
TECHNIQUE

With the mathematics developed in Section 2 and the function-
ality presented in Section 4, we now describe the new bump-
mapping technique. Where appropriate, practical C source
code is presented in several appendices to make concrete the
approach being described.

Before describing the details of the technique, here are several
important observations about the overall approach:

• Bump maps are represented as normal perturbation maps.
The pre-filtering scheme described in Section 2.6.3 is used
to reduce aliasing artifacts, improve texture cache locality,
and reasonably reproduce the roughness of distant bumpy
diffuse surfaces.

• The per-fragment lighting operations employ the Blinn
lighting model as described in Section 2.5.1. The required
mathematics is built from the functionality available in the
register combiners. The dot product operation is particu-
larly useful for computing the diffuse and specular lighting
terms.

• The technique uses multiple rendering passes. The tech-
nique typically renders three passes. The first pass ren-
ders a surface decal. The second pass modulates the decal
with the bump-mapped diffuse and ambient contributions
from a single light. The third pass adds a bump-mapped
specular contribution from a single light. Both the second
and third passes are dual-textured rendering passes.

By expressing the technique as multiple rendering passes,
the technique has a measure of scalability. For example,
other lighting effects such as attenuation, spotlight illumi-
nation, and shadows can be added through further passes.
Likewise, additional light sources can be supported with
additional passes. The technique’s rendering passes can

also be scaled back when a decal texture is not required or
when the object does not have a specular appearance.

This multi-pass approach gives the technique an evolu-
tionary path for future hardware acceleration. As more
texture units and combiner stages are added in future
GPUS, multiple rendering passes can be collapsed into
fewer increasingly multi-textured passes.

• By lighting in tangent space as explained in Section 2.6.2,
the technique allows the bump map texture to be decou-
pled from the object’s geometric description.

Tangent space is constructed on a per-vertex basis. This
requires the CPU to supply tangent-space per-vertex light
and half-angle vectors as 3D texture coordinates.

The technique can also light in object space. This ties the
bump maps to the object geometry, but this is often appro-
priate for surfaces such as terrain that have ad hoc varia-
tions in bumpiness over the surface. When lighting in
object space, the CPU supplies object-space light and half-
angle vectors as 3D texture coordinates.

• The light and half-angle vectors discussed above would
become denormalized if they are simply linear interpo-
lated. The technique performs per-fragment renormaliza-
tions of the interpolated light and half-angle vectors using
a so-called “vector normalization” cube map.

This normalization cube map and the 2D normal map are the
two textures used in the dual-textured second and third ren-
dering passes.

Figure 11 shows the results of rendering a torus with the tech-
nique using three rendering passes. Figure 12 shows the con-
tribution of each of the three passes.

Figure 11. Torus rendered with the new bump mapping technique. Specular, diffuse, and ambient
lighting contributions are all present along with a surface decal texture.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

18

5.1 Per-vertex Computations
Objects rendered with the technique must be represented as a
polygonal model. As with any bump-mapping scheme, tangent
vectors and normal vectors are required to orient the bump map
consistently on the surface of the model. We assume that each
vertex within the model has both a normal vector and tangent
vector.

For polygonal models generated from parametric surfaces, these
vectors are straightforward to generate from the parametric
representation. Modeling packages typically supply per-vertex
normals for use with standard per-vertex lighting, but tangent
vectors are less common. If the modeling package generates
per-vertex 2D texture coordinates for the object surface,
tangent vectors can be deduced from these texture coordinates.

For tangent-space bump mapping, we make the square patch
assumption as described in Section 2.6.2. If this assumption is
not reasonable for your model, you should re-parameterize the
model so the assumption is reasonable.

Given the per-vertex normal and tangent vectors for a polygonal
model, we construct an orthonormal basis at each vertex.
Using notation similar to the notation used in Section 2.6.2, we
call the normalized normal vector Nn and the normalized tan-
gent vector Tn. The binormal Bn is defined as Nn × Tn. These
three normalized vectors form an orthonormal basis at each
vertex.

We can then use this orthonormal basis to transform an object-
space light and eye position into tangent space. As noted by
Peercy [21], transforming an object-space vector into tangent
space is done by transforming the vector by the 3x3 matrix
formed by the three vectors Tn, Nn, and Bn. So if LOS is the
object space light vector, the light vector in tangent space LTS

computed as

=

)()()(

)()()(

)()()(

znznzn

ynynyn

xnxnxn

OSTS

NBT

NBT

NBT

LL

This same transform can be used to transform the object space
half-angle vector from object space to tangent space as well.

Because most applications do not keep the eye and light posi-
tions in object space, applications may first need to transform
these positions into object coordinates. This is simply a matter
of transforming these positions in world space by the inverse
matrix used to transform object vertices from object space to
world space.

The tangent-space light and half-angle vectors must be recom-
puted whenever the light position, eye position, or the object’s
modeling transform change. For rigid models, the orthonormal
basis for each vertex can be pre-computed once. Deformable
models require updating the orthonormal basis of deformed
vertices as well as re-computing the tangent-space light and
half-angle vectors.

Both positional and directional lights can be handled by
computing the object-space light vector appropriately.
Supporting a local and infinite view model is likewise simply a
matter of computing the object-space eye vector appropriately.

As an optimization, if the specular pass is not rendered, there is
no need to compute tangent-space half-angles.

Appendix C presents source code that shows how to transform
object-space light and eye vectors into tangent space and how to
compute per-vertex tangent-space normalized light and half-
angle vectors. The code handles a positional light and a local
viewer model. Note that this code is floating-point vector
intensive and therefore could be substantially optimized using
AMD’s 3Dnow or Intel’s SSE instructions.

5.2 Per-vertex Vector Interpolation and
Normalization

During the ambient and diffuse bump-mapped rendering pass,
the per-vertex tangent-space light vectors are sent to the hard-
ware as (s,t,r) texture coordinates to access a “normalization”
cube map texture to be described. Similarly during the specu-
lar bump-mapped rendering pass, the tangent-space half-angle
is similarly sent to the hardware as (s,t,r) texture coordinates to
access the same normalization cube map.

The vector normalization cube map texture contains RGB
colors that when expanded in the register combiners are nor-
malized per-fragment vectors. At this point the register com-
biners are configured to perform either diffuse or specular
lighting calculations using either the normalized light or half-

Figure 12. Torus rendered with the new bump mapping technique. Specular, diffuse, and ambient
lighting contributions are all present along with a surface decal texture.

×××× ++

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

19

angle vector. The perturbed normal is supplied by the second
texture unit bound to a 2D normal map texture.

For now, we consider the vector normalization cube map. In an
abstract sense, cube maps can encode functions of unnormal-
ized direction vectors. An environment map is really just a
function that maps a reflected direction vector to a color.
Based on this abstract conception of a cube map, note that
vector normalization is a similar function. Instead of generat-
ing an RGB color from a given unnormalized direction vector,
normalization merely generates a normalized version of the
direction vector. Both an RGB color and a normalized vector
are 3-element vectors. It should then be possible to encode the
vector normalization function into a cube map.

One problem is that normalized vectors have values within the
signed numeric range of [-1,1] while conventional texture
formats support on the unsigned numeric range of [0,1]. How-
ever, by scaling by one-half and biasing by one-half, the [-1,1]
range can be range-compressed into the [0,1] range. Getting
back to the [-1,1] range requires reversing the original scale
and bias by scaling by two and biasing by negative one. Con-
veniently, this range expansion is exactly what the
GL_EXPAND_NORMAL register combiner input mapping does
(see Table 3).

Note that linear texture filtering operations have the same final
result whether the filtering is done in the [0,1] range and then
expanded or in the true [-1,1] range. This means that the
texturing hardware needs no special filtering allowances to
store signed [-1,1] values compressed into the [0,1] range.

Constructing the range-compressed vector normalization cube
map is straightforward. For each 2D texel position (s,t) on
each face, compute the inverse of the cube map function that
maps the 3D direction vectors (s,t,r) to a 2D (s,t) texel position
on a given face image (see Section A.4).

This is an ambiguous inverse mapping because vectors in the
same direction but of varying length all map to the same single
2D texel position on a face. Because we will normalize the
result in any case, we can always simply multiply be one. The
remaining coordinate is then either one or negative one de-
pending on whether the face is the positive or negative face
respectively for the axis. This 3D direction vector should then
be normalized and range-compressed into the [0,1] range and

treated as an RGB color. This is the color for the correspond-
ing texel in the vector normalization cube map.

Appendix D presents source code that shows how to construct a
normalization cube map for OpenGL.

5.3 Normal Map Construction
While the vector normalization texture is a cube map, the
normal map is a more conventional 2D texture. Both textures
however contain range-compressed vectors. In the case of the
normal map, each texel encodes a perturbation vector used to
perturb the object’s surface to mimic surface bumpiness. This
perturbation vector is stored in the RGB components of the
texture, but the normal map is actually an RGBA texture as
will be explained.

The base mipmap level of the normal map is likely to be gener-
ated from a height field. This is because height fields are con-
venient to author and store. Figure 13 shows the height fields
used to generate the normal maps for the bump mapping exam-
ples in other figures.

A normal perturbation map is typically generated from a height
field by applying Equation 25 and Equation 27 and using finite
differencing techniques to compute the partial differentials.
The resulting normalized perturbed normals must be range-
compressed as shown by Equation 28 and stored in the RGB
components of the normal map texture’s base mipmap level.
The alpha value for the base level of the normal is uniformly
1.0.

The standard OpenGL gluBuild2Dmipmaps routine is not
sufficient for mipmapping the normal maps. The normal map
texture is filtered as described in Section 2.6.3. This means
that the normal map also stores the amount of denormalization
of the filtered normals in the texture’s alpha component.
While the base level alpha component of a normal map texture
is uniformly 1.0, the alpha component of bumpy normal maps
can shrink in the smaller mipmap levels and will typically be
less than 1.0. The alpha component is not range-compressed.
It is a signed quantity that can vary from 1.0 to 0.0.

The perturbation vector itself is always stored range-
compressed and normalized in the RGB components of every
mipmap level.

Figure 13. Two height field textures used to construct the normal maps used in the bump mapping
examples within this paper.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

20

While better filtering is possible, the discussion below assumes
a “box filter” approach to filtering the normal map. The mip-
map filtering process for a normal map proceeds by down
sampling each 2x2 block of texels in a given mipmap level to
generate the corresponding single texel in the next smaller
mipmap level. The filtering process is not a simple averaging
of the 4 texels. Instead, first the RGB portion of each of the
four texels is modulated by the texel’s alpha component. This
reverts the vector back to its denormalized length since the
RGB components are always stored as a normalized vector.
Then the denormalized vectors are averaged. The length of this
averaged vector becomes the filtered texel’s alpha component.
The filtered texel’s RGB components are the normalized and
then range-compressed version of the averaged vector.

This filtering process is applied recursively to each mipmap
level for the normal map.

This filtering approach gives access to both a normalized
normal perturbation vector for specular lighting computations
and a denormalized normal perturbation for diffuse lighting
computations by modulating the normalized perturbation vector
by the normal map’s alpha component. This is advantageous
for the reasons given in Section 2.4.2 and Section 2.5.3.

Appendix E presents source code that shows how to generate a
normal map from a height field. Appendix F presents source
code that shows how to load a normal map as an OpenGL
texture including the proper filtering of mipmap levels.

5.4 Ambient and Diffuse Illumination
The first rendering pass is straightforward. If the object has a
decal texture, enable depth buffering and render the object with
the decal texture. Assuming the frame buffer supports an alpha
component, a 1.0 alpha component should be written when
rendering the first decal pass.

The second pass uses frame buffer blending to modulate the
decaled object rendered in the first pass with the object’s
bump-mapped ambient and diffuse illumination from a light
source.

Render the second pass with blending and depth testing
enabled. The depth test should be set to equality to match the
depth of fragments rendered in the first pass. The blend func-
tion should modulate the source and destination colors.
OpenGL should be configured as

 glEnable(GL_BLEND);
 glBlendFunc(GL_DST_COLOR, GL_ZERO);
 glDepthFunc(GL_EQUAL);

Optionally, stencil testing can be used to eliminate the possi-
bility of double blending if that is a concern.

The bump-mapped ambient and diffuse illumination on the
surface is computed with Equation 11 for every fragment be-
longing to the object. As will be shown, the register combiners
can be configured to evaluate Equation 11.

The bump-mapped ambient and diffuse rendering pass enables
both texture units. Texture unit 0 is bound to the 2D normal
map texture. Texture unit 1 is bound to the vector normaliza-
tion cube map.

While it introduces the possibility for slightly denormalizing
the perturbed normal vectors, experience with the technique
has proven that linear-mipmap-linear filtering of the normal
map texture significantly reduces the temporal aliasing artifacts
with minimal dimming of the overall appearance of the bump-
mapped object.

Linear magnification filtering can give the surface a “grated”
appearance due to denormalization when extreme magnification
occurs. This can be substituted with “blockiness” by instead
using nearest filtering. Another solution is to extrapolate the
normal map’s base level, being sure to range-expand, renor-

Figure 14. The left torus does not self-shadow based on the geometric normal. The right torus does
self-shadow based on the geometric normal. The light position is the same for both tori, but the right

torus gives a truer sense that the light is coming from the extreme right side.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

21

malize, and range-compress the texels in extrapolated mipmap
levels. Extrapolation works by putting off when magnification
occurs so it does not solve the problem. Additionally, extrapo-
lation increases the normal map memory requirements.

The texture coordinates for the normal map are typically some
version of the texture coordinates used to apply the decal in the
first rendering pass.

Sometimes it is important for the decal to “match up” with the
normal map. For example, the normal map might contain per-
turbations due to etched letters that must be aligned with letters
visible in the decal. If the normal map was constructed from a
height field aligned with the decal, the construction of the
normal map by finite differencing as described in Section 5.3
and Appendix E will bias the normal map texture by half a
texel in both s and t. The texture matrix can be used to com-
pensate for this bias.

The texture coordinates for the vector normalization cube map
are the per-vertex tangent-space light vectors described in
Section 5.1.

Next, the register combiners must be configured to evaluate
Equation 11 as follows:

1. Enable the register combiners and request two general
combiner stages.

2. Load the ambient illumination Iambient in the constant color
0 register. Load the diffuse material characteristic kdiffuse

in the constant color 1 register.

3. In the RGB portion of general combiner stage 0, use the
GL_EXPAND_NORMAL input mapping to assign and
range-expand the RGB portions of the texture 0 and
texture 1 registers into variables A and B. This loads the
filtered normal perturbation in A and the normalized light
vector in B. Output the dot product of A and B to the
spare 0 register. This computes L•N' except that N' is
normalized when it should be denormalized for proper
filtering. Discard the other two outputs.

4. In the alpha portion of general combiner stage 0, use the
ABCD output to scale the blue component of the light
vector in texture 1 by 8. Use the GL_EXPAND_NORMAL
input mapping to range-expand the blue component. The
blue component of texture 1 is actually the z component of
the tangent-space light vector, i.e. Lz. Scaling Lz by 8 is
accomplished by adding Lz to itself and scaling by 4. This
computes the sself self-shadowing term in Equation 11 as
defined by Equation 12 once 8 times Lz is clamped to the
range [0,1]. This is because Lz = L•N in tangent space.
Output the value of 8 times Lz to the alpha portion of the
spare 0 register. Discard the other two outputs.

5. In the RGB portion of general combiner stage 1, use the
AB output to scale L•N' computed in stage 0 by the de-
normalization factor stored in the alpha portion of the
texture 0 register. Load the RGB portion of the spare 0
register into A using the GL_UNSIGNED_IDENTITY
input mapping to clamp L•N' to a positive value. Load
the alpha portion of the texture 0 register into B. Output
the product of A and B to the spare 0 register. Discard the
other two outputs.

6. Discard all outputs of the alpha portion of general combi-
ner stage 1.

7. In the final combiner, make the following assignments:

• A equals the spare 0 alpha portion, i.e. the self-
shadowing term sself. The final combiner will auto-
matically clamp sself to a non-negative value.

• B equals the EF product pseudo-register.

• C equals zero

• D equals the constant color 0, i.e. the ambient contri-
bution Iambient.

• E equals the spare 0 RGB portion, i.e. the diffuse
term max (0,L•N').

• F equals the constant color 1 RGB portion, i.e. the
diffuse material reflectance kdiffuse.

• G equals spare 0 alpha portion, i.e. the self-shadow-
ing term sself. As with A, the value of sself is automati-
cally clamped to a non-negative value.

The resulting RGB color for the fragment is identical to evalu-
ating Equation 11. The resulting alpha color for the fragment is
the self-shadowing term sself.

After blending, this leaves the ambient and diffuse illumination
modulated with the object’s decal. The frame buffer’s alpha
component contains the value sself. This self-shadowing term
must be modulated with the specular illumination term as well
as the diffuse illumination. By stashing the sself term in the
alpha component of the frame buffer, the third specular
rendering pass can modulate the specular illumination by a
value computed by the second rendering pass using destination
alpha frame buffer blending.

Figure 14 shows the difference that accounting for geometric
self-shadowing makes by providing a strong cue to help the
viewer determine where the light is located.

Appendix G presents source code that shows how to configure
the register combiners to compute the ambient and diffuse il-
lumination as described in this section.

5.5 Specular Illumination
A third rendering pass adds the specular contribution. This
rendering pass configures the texture units as in the second
pass. However, the blending mode, register combiners configu-
ration, and texture coordinates for the normalization cube map
texture are both quite different from the second pass.

The blend mode for the specular rendering pass adds the
specular contribution to the existing diffuse and ambient con-
tribution modulated with the surface decal. Yet as noted in the
last section, the specular term should also be modulated with
the self-shadowing term sself stashed in the alpha component of
the frame buffer during the second rendering pass. This
requires the blend mode

 glBlendFunc(GL_DST_ALPHA, GL_ONE);

Instead of supplying the tangent-space light vector for the nor-
malization cube map texture coordinates, the tangent-space
half-angle vector is supplied for the cube map’s texture coordi-
nates.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

22

The register combiners are configured to compute the specular
contribution from Equation 16 using a perturbed normal. The
register combiners should be configured as follows:

1. Enable the register combiners and request two general
combiner stages.

2. In the RGB portion of general combiner stage 0, use the
GL_EXPAND_NORMAL input mapping to assign and
range-expand the RGB portions of the texture 0 and
texture 1 registers into variables A and B. This loads the
normalized half-angle vector in A and the filtered normal
perturbation in B. Output the dot product of A and B to
the spare 0 register. This computes H•N'. Discard the
other two outputs.

3. In the alpha portion of general combiner stage 0, use the
GL_UNSIGNED_IDENTITY_NV input mapping to
assign the blue component of texture 1 into variable A.
This is Hz but is kept in the [0,1] range for reasons to be
explained in Step 4. Assign 1 to variable B by assigning it
zero input mapped using GL_UNSIGNED_INVERT_NV.
Output the AB product to spare 0 alpha. This simply
copies texture 1 alpha into spare 0 alpha. Discard the
other two inputs.

4. In the RGB portion of general combiner stage 1, assign the
RGB portion of spare 0 to both A and B using the
GL_UNSIGNED_IDENITY_NV input mapping to clamp
negative values in spare 0 to zero. The product of A and B
is max(0, H••N')2. Assign C and D both zero. Use the
mux output to output max(0, H•N')2 to spare 0 if spare 0
alpha is greater or equal to 0.5, otherwise output zero.
This has the effect of clamping the specular contribution to
zero if the unperturbed H•N is negative. Note that spare 0
alpha is greater than or equal to 0.5 when Hz is positive
and Hz = H•N. Discard the other two outputs.

5. In the alpha portion of general combiner stage 1, discard
all the outputs.

6. In the final combiner, make the following assignments:

• A equals the EF product pseudo-register.

• B equals the EF product pseudo-register.

• C equals zero.

• D equals zero.

• E equals the RGB portion of spare 0

• F equals the RGB portion of spare 0.

• G equals zero.

The resulting RGB color for the fragment is max(0,H•N')8.
The resulting alpha color for the fragment is zero. When this is
modulated with sself in the frame buffer’s alpha component and
added to the frame buffer’s RGB components, this computes
the total result of Equation 16 using N' the normal at each
visible pixel in the bump-mapped object if we assume Kspecular

is (1,1,1) and shininess is 8.

Unfortunately, 8.0 is not a particularly large specular exponent
so the specular contribution is not particularly shiny. Also, the
successive squaring of 8-bit precision values leads to banding

artifacts though these artifacts are often hidden within the dif-
fuse and ambient illumination. An alternative is to replace the
specular exponentiation with a steep linear or quadratic ramp.
For example, consider the approximation

2))75.0),0(max(4,0max(

),0max(

−•×
≅
•

N'H

N'H shininess

Implementing the above approximation leaves a final combine
multiplier free so the option exists to either square the above
approximation to make a still steeper ramp or use the multiply
to modulate by Kspecular.

Appendix H presents source code that shows how to configure
the register combiners to compute the specular illumination as
described in this section.

5.6 Other Effects
Other embellishments to the lighting model described so far are
possible by rendering more passes. Attenuation can be added
using either extra texturing passes or supplying a per-vertex fog
coordinate based on distance to the light source using the
EXT_fog_coord extension [18]. While not physically plau-
sible, this scheme can support attenuation with exponential or
exponential squared drop-offs in addition to more conventional
inverse or inverse squared drop-offs.

Spotlights patterns can be encoded in projected textures as
described by Segal [26].

Multiple light sources can be handled with multiple passes.

5.7 Without Special Features
While the discussion so far has assumed the availability of dual
texturing, cube maps, and register combiners, it is possible to
adapt aspects of the technique described to less functional
graphics hardware.

Everitt has described a multi-pass technique called Orthogonal
Illumination Mapping (OIM) [8] that computes dot products (or
dot product approximations if subtractive blending is not sup-
ported) with multiple rendering passes. Unfortunately, an
arbitrary dot product may require as many as 12 separate
rendering passes. Various optimizations are possible such as
using multitexture hardware to collapse certain passes into a
single pass or exploiting the fact that one of the dot product
operands is a constant vector.

And instead of cube maps, Heidrich’s dual-paraboloid maps
[12] can serve the same purpose that the vector normalization
cube map serves. Again however, this approach would signifi-
cantly increase the number of passes required, particularly if
coupled with OIM.

Everitt [9] has demonstrated that tangent-space bump mapping
along the lines of the techniques presented here is possible
without resorting to special hardware features, but doing so
required 26 rendering passes to approximate what a GeForce or
Quadro GPU can do in 3 passes.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

23

6 CONCLUSIONS
The described rendering technique implements a bump-mapped
illumination model with ambient, diffuse, and specular contri-
butions and a textured surface decal. The technique supports
both positional or directional lights as well as either the infinite
or local viewer models. The technique can light in either
tangent space or object space though the presentation here has
focused on the tangent space formulation.

The technique is robust. There are five notable reasons for the
technique’s robustness. First, the technique supports per-
fragment normalization of interpolated light and half-angle
vectors via the vector normalization cube map. This substan-
tially reduces the need to tessellate the rendered polygon model
as a fine mesh to avoid linear interpolation artifacts. Second,
the normal map can encode completely arbitrary perturbations.
The technique does not limit the range of possible perturba-
tions. Third, by filtering the normal map properly and through
the use of linear-mipmap-linear filtering, temporal aliasing
artifacts when animating are minimal. The normal filtering
scheme also faithfully reproduces the expected dimness of a
distant bumpy object compared to a smooth version of the
object. Fourth, the technique reasonably accounts of local
surface self-shadowing effects. Fifth, the technique is not
limited to directional lights so objects are free to move around
and interact with the light source.

The technique is fast and works on mass-market 3D hardware
that is widely available; the technique runs at quite interactive
rates on today’s GPUs. The extremely configurable register
combiners mechanism makes it possible to implement the
entire technique in a small, tractable number of rendering
passes.

The ability to scale the technique to future hardware designs
bears particular emphasis. Today the technique today requires
three rendering passes for a single light source. However, it is
not difficult to imagine extensions to future GPUs to support
more texture units and more general combiner stages that
would permit today’s three-pass approach to require just a
single rendering pass on a future GPU. Similarly, given future
GPU enhancements and improved performance, it is easy to
appreciate how embellishments such as spotlights, attenuation,
shadows, and multiple light sources could be added through
some combination of more rendering passes and/or more col-
lapsing of existing multi-pass formulations into fewer multi-
textured, multi-combiner passes.

Sample code for the technique discussed here is available from
the Developer Relations section of the www.nvidia.com web
site. Look for the bumpdemo.zip file in the OpenGL source
code section.

REFERENCES
[1] K. Bennebroek, I. Ernst, H. Rüsseler, O. Wittig,

“Design Principles of Hardware-based Phong
Shading and Bump Mapping,” 11th Eurographics
Workshop on Graphics Hardware, Poitiers, France,
August 26-27, 1996, pp. 3-9.

[2] James Blinn, Martin Newell, “Texture and
Reflection in Computer Generated Images,”

Communications of the ACM, 19(10), October 1976,
pp. 542-546.

[3] James Blinn, “Models of Light Reflection for
Computer Synthesized Pictures,” Computer
Graphics (Proc. Siggraph ’77), July 1977, pp. 192-
198.

[4] James Blinn, “Simulation of Wrinkled Surfaces,’’
Computer Graphics (Proc. Siggraph ’78), August
1978, pp. 286-292,. Also in Tutorial: Computer
Graphics: Image Synthesis, pp. 307-313.

[5] Michael Cosman, Robert Grange, “CIG Scene
Realism: The World Tomorrow,” Proc. Of I/ITSEC
on CD-ROM, 1996, pp. 628.

[6] I. Ernst, D. Jackèl, H. Rüsseler, O. Wittig,
“Hardware Supported Bump Mapping: A Step
towards Higher Quality Real-Time Rendering,” 10th

Eurographics Workshop on Graphics Hardware,
Maastricht, Netherland, August 28-29, 1995, pp. 63-
70.

[7] I. Ernst, H. Rüsseler, H. Schulz, O. Wittig, “Gouraud
Bump Mapping,” Proc. 1998
Eurographics/Siggraph Workshop on Graphics
Hardware, Lisbon, Portugal, August 31-September
1, 1998, pp. 47-53.

[8] Cass Everitt, Orthogonal Illumination Maps web
page, August 1999.
http://www.opengl.org/News/Special/oim/Orth.html

[9] Cass Everitt, Per-Pixel Lighting with Unextended
OpenGL web page, 1999.
http://www.opengl.org/News/Special/oimupdate/per-
pixel.html

[10] Alain Fournier, “Filtering Normal Maps and
Creating Multiple Surfaces,” University of British
Columbia, Department of Computer Science,
TR-92-41, 1992.
http://www.cs.ubc.ca:80/cgi-bin/tr/1992/TR-92-41

[11] Ned Greene, “Environment Mapping and Other
Applications of World Projections,” IEEE Computer
Graphics and Applications, November 1986, pp. 21-
30.

[12] Wolfgang Heidrich, Hans-Peter Seidel, “View-
independent Environment Maps,” Proc. 1998
Eurographics/Siggraph Workshop on Graphics
Hardware, Lisbon, Portugal, August 31-September
1, 1998, pp. 39-45. http://www.mpi-
sb.mpg.de/~heidrich/Papers/HWWS.1998.ps.gz

[13] NVIDIA Corporation, EXT_texture_cube_map,
OpenGL extension specification, NVIDIA OpenGL
Extension Specifications, September 1999.
http://www.nvidia.com

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

24

[14] NVIDIA Corporation,
NV_register_combiners, OpenGL extension
specification, NVIDIA OpenGL Extension
Specifications, September 1999.
http://www.nvidia.com

[15] NVIDIA Corporation, NV_texgen_emboss
OpenGL extension specification, NVIDIA OpenGL
Extension Specifications, September 1999.
http://www.nvidia.com

[16] NVIDIA Corporation, NV_texgen_reflection
OpenGL extension specification, NVIDIA OpenGL
Extension Specifications, September 1999.
http://www.nvidia.com

[17] NVIDIA Corporation,
NV_texture_env_combine4 OpenGL
extension specification, NVIDIA OpenGL Extension
Specifications, September 1999.
http://www.nvidia.com

[18] OpenGL Architectural Review Board,
EXT_fog_coord OpenGL extension specification,
included in the NVIDIA OpenGL Extension
Specifications, September 1999.
http://www.nvidia.com

[19] Kim Pallister, “Ups and Downs of Bump Mapping
with DirectX 6,” Gamasutra web site, June 4, 1999.
http://www.gamasutra.com/features/19990604/bump
_01.htm

[20] Bui Tuong Phong, “Illumination for Computer
Generated Pictures,” Communications of the ACM,
18(6), June 1975, pp. 311-317.

[21] Mark Peercy, John Airey, Brian Cabral, “Efficient
Bump Mapping Hardware,” Computer Graphics
(Proc. Siggraph ‘97), August 1997, pp. 303-306.

[22] Tom McReynolds, David Blythe, Brad Grantham, et
al., “Bump Mapping with Textures,” Siggraph 1999
Course Notes: Lighting and Shading Techniques for
Interactive Applications or Advanced Graphics
Programming Techniques Using OpenGL, Section
10.6, pp. 103-108.

[23] Andreas Schilling, “Toward Real-Time
Photorealistic Rendering: Challenges and
Solutions,” Proc. 1997 Eurographics/Siggraph
Workshop on Graphics Hardware, Los Angeles,
California, August 3-4, 1997, pp. 7-15.

[24] John Schlag, “Fast Embossing Effects on Raster
Image Data,” Graphics Gems IV, Academic Press,
Cambridge, 1994.

[25] Mark Segal, Kurt Akeley, The OpenGL Graphics
System: A Specification (Version 1.2.1), October 14,
1998.

[26] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim
Foran, Paul Haeberli, “Fast Shadows and Lighting
Effects Using Texture Mapping,” Computer
Graphics (Proc. Siggraph ’92), July 1992, pp. 249-
252.

[27] Douglas Voorhies, Jim Foran, “Reflection Vector
Shading Hardware,” Computer Graphics (Proc.
Siggraph ‘94), July 1994, pp. 163-166.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

25

A THE OPENGL CUBE MAP EXTENSION
This appendix is an introduction to programming OpenGL’s cube map functionality. OpenGL supports cube map texturing via the
EXT_texture_cube_map extension [13]. The OpenGL Architectural Review Board (ARB) has upgraded this extension to be an
official ARB extension named ARB_texture_cube_map. The EXT and ARB extensions have identical semantics and share the
same enumerant values so the only difference between the two extensions is the name.2 The discussion below uses the EXT-suffixed
enumerants and commands, but by merely changing the EXT suffix to ARB, the discussion applies identically to the ARB version of the
extension.

A.1 New Cube Map Texture Targets
In conventional OpenGL, there are two types of textures: 1D and 2D textures. OpenGL 1.2 introduced a new 3D texture type for volu-
metric texturing. The texture cube map extension adds a new cube map texture type. OpenGL calls these different texture types texture
targets. Including OpenGL 1.2 and the texture cube map extension, there are now four texture targets: 1D, 2D, 3D, and cube map. Each
texture target has an associated enumerant that is passed to texture routines such as glBindTexture, glTexParameter, and
glTexImage.

For example, the texture target for 2D textures is GL_TEXTURE_2D. This enumerant is passed as the first parameter to
glBindTexture, glTexParameter, and glTexImage and similar calls. glEnable and glDisable also use the 2D texture
target enumerant to enable and disable 2D texturing. Similarly the texture target enumerants for 1D and 3D textures are
GL_TEXTURE_1D and GL_TEXTURE_3D.

For cube map textures, there is a new texture target enumerant called GL_TEXTURE_CUBE_MAP_EXT. The EXT suffix just indicates
that the enumerant is for an EXT extension; all the new EXT cube map enumerants have this suffix. This is the enumerant that you
should pass to glBindTexture, glTexParameter, glEnable, and glDisable when using cube map textures.

But the GL_TEXTURE_CUBE_MAP_EXT enumerant is not used for glTexImage2D and related commands such as
glCopySubTexImage2D. The texture cube map extension makes a distinction not necessary for the other texture targets. While 1D,
2D, and 3D textures have only a single set of image mipmap levels, every cube map texture has six distinct sets of image mipmap levels.
Each texture target can be mipmapped so the complete image data for 1D, 2D, and 3D textures is really a set of mipmap levels. For cube
maps textures, each distinct cube map face has its own set of mipmap levels. Because cube maps have six faces (the other texture types
can be thought of as having only one face each), the texture cube map extension makes a distinction between the cube map “texture as a
whole” target and the six “texture image” targets. The six cube map texture image targets are:

 GL_TEXTURE_CUBE_MAP_POSITIVE_X_EXT
 GL_TEXTURE_CUBE_MAP_NEGATIVE_X_EXT
 GL_TEXTURE_CUBE_MAP_POSITIVE_Y_EXT
 GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT
 GL_TEXTURE_CUBE_MAP_POSITIVE_Z_EXT
 GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT

These targets correspond to the six cube map faces. If you think of a cube map texture as centered at the origin of and aligned to an XYZ
coordinate system, each face is named by the positive or negative X, Y, or Z axis that pierces its face.

For convenience, the cube map texture image target enumerants are laid out in sequential order so that

 GL_TEXTURE_CUBE_MAP_POSITIVE_Y_EXT = GL_TEXTURE_CUBE_MAP_POSITIVE_X_EXT + 2,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT = GL_TEXTURE_CUBE_MAP_POSITIVE_X_EXT + 5 , etc.

These cube map texture image target enumerants are the target parameter values that should be used with glTexImage2D,
glCopyTexImage2D, glTexSubImage2D, glCopySubTexImage2D, glGetTexImage, and glGetTexLevelParameter
to update or query the specified image of the texture image target's respective cube map face.

Cube map images must always have square dimensions so the faces form a cube. In addition to the other texture consistency rules
specified by OpenGL, all the faces at a given level of a cube map must have the same dimensions and the width and height of each
particular image in the cube map must be equal.

Like the other texture targets, cube map textures support a special proxy target used to query if a given texture target configuration is
supported by the OpenGL implementation. The cube map texture proxy target is GL_PROXY_TEXTURE_CUBE_MAP_EXT. You never
use the proxy target for texturing. Instead you only query if it works or not. Because all the dimensions of all the faces for a given level
of any cube map must have identical dimensions, there are not six proxy texture targets for each cube map face. A single cube map proxy
target suffices.

2 Early NVIDIA drivers for the GeForce and Quadro GPUs advertise the EXT_texture_cube_map extension and not the ARB

extension because the ARB version of the extension had not been approved when the drivers were initially released. Subsequent
NVIDIA drivers advertise both the EXT and ARB extensions for backward and future compatibility.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

26

For consistency with how OpenGL 1.2’s 3D texture target is supported, there is also a new implementation defined constant
GL_MAX_CUBE_MAP_TEXTURE_SIZE_EXT that indicates the maximum cube map texture size supported by the OpenGL imple-
mentation. In practice, the proxy mechanism is a preferable means to determine the implementation's specific limits.

A.2 Setting the Images for a Cube Map Texture
Here is how to load the six faces of a non-mipmapped cube map texture:

 GLubyte face[6][64][64][3];
 for (i=0; i<6; i++) {
 glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X_EXT + i,
 0, // level
 GL_RGB8, // internal format
 64, // width
 64, // height
 0, // border
 GL_RGB, // format
 GL_UNSIGNED_BYTE, // type
 &face[i][0][0][0]); // pixel data
 }
Each face in this example is a 64x64 RGB image.

Establishing mipmaps is not any more difficult. You can use the gluBuild2DMipmaps routine for establishing mipmap textures for
cube map faces just like 2D textures. Instead of passing GL_TEXTURE_2D for the target parameter, pass in one of the "texture image"
cube map targets. Example:

 gluBuild2DMipmaps(GL_TEXTURE_CUBE_MAP_NEGATIVE_X_EXT,
 GL_RGB8, 64, 64, GL_RGB, GL_UNSIGNED_BYTE, &face[1][0][0][0]);

A.3 Enabling and Disabling Cube Map Textures
Enabling and disabling the cube map texture is done as follows:

 glEnable(GL_TEXTURE_CUBE_MAP_EXT);
 glDisable(GL_TEXTURE_CUBE_MAP_EXT);

As stated earlier, remember that for a cube map texture to be consistent, all the faces of all required levels must be square and have the
same dimensions (in addition to the standard OpenGL texture consistency rules). If the texture is not consistent, OpenGL is required to
act as if the inconsistent texture unit is disabled.

OpenGL has a priority scheme when multiple texture targets are enabled at the same time. Cube map texturing occurs when cube map
texturing is enabled even if 3D, 2D, or 1D texturing is also enabled. The texturing enable priority is cube map, 3D, 2D, and finally 1D.

A.4 Mapping Texture Coordinates to Cube Map Faces
Because there are multiple faces, the mapping of texture coordinates to positions on cube map faces is more complicated than the 1D,
2D, and 3D texturing targets. The EXT_texture_cube_map extension is designed to be consistent with DirectX 7's cube map
arrangement. This is also consistent with the cube map arrangement in Pixar's RenderMan package.

For cube map texturing, the (s,t,r) texture coordinates are treated as a direction vector (rx,ry,rz) emanating from the center of a cube.
(The homogeneous q coordinate is ignored since it merely scales the vector without affecting the direction.) At texture application time,
the interpolated per-fragment (s,t,r) selects one of the cube map face's 2D mipmap sets based on the largest magnitude coordinate direc-
tion (the major axis direction). The target column in Table 1 explains how the major axis direction maps to the 2D image of a particular
cube map target.

Major Axis
Direction

Target sc tc ma

+rx GL_TEXTURE_CUBE_MAP_POSITIVE_X_EXT −rz −ry rx

−rx GL_TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz −ry rx

+ry GL_TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry

−ry GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx −rz ry

+rz GL_TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx −ry rz

−rz GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT −rx −ry rz

Table 1. Texture image face targets for each major axis direction.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

27

Using the sc, tc, and ma determined by the major axis direction as specified in the table above, an updated (s',t') is calculated as follows

2
1

2
'

2
1

2
'

+=

+=

ma

tc
t

ma

sc
s

If |ma| is zero or very nearly zero, the results of the above two equations may not be well defined (though the result may not lead to GL
interruption or termination). Once the cube map face's 2D mipmap set and (s',t') is determined, texture fetching and filtering proceeds
like standard OpenGL 2D texturing.

A.5 Texture Wrapping for Cube Map Textures
Ideally cube map texturing hardware would automatically filter texels from different faces when texture coordinates fell on or very near
the edges and corners of the cube map. In practice, this is too complicated for current hardware. However, OpenGL 1.2’s
GL_CLAMP_TO_EDGE wrap mode3 usually works sufficiently well that seaming artifacts from cube map face transitions are hardly
noticeable.

The seaming artifacts are generally minor for one of two reasons. First, if the cube map texture is an environment map, humans are not
particularly well adapted at finding faults in reflections off complex surfaces. Second, the cube map may encode a slowly changing func-
tion that makes seaming errors negligible. For example, the normalization cube map discussed in Section 5.3 changes very little across a
seam. Moreover because the result of the normalization cube map feeds a subsequent lighting calculation, any seaming artifacts are not
directly observable. Extreme minification or extremely low-resolution cube maps (as a rule of thumb, smaller than 32x32 texels on a
face) are two cases where seaming artifacts are noticeable. In the case of extreme minification, such situations occur most often on dis-
tant objects or regions of high surface curvature making the artifacts difficult to notice.

For OpenGL implementations that support texture borders in conjunction with cube map textures,4 one way to eliminate the seaming
artifacts is to specify each face with a 1-texel border around each cube face that contains the data from the edge of the adjacent texture.
At the corners of the border of each face, specify a weighted combination of the texels from the two other faces meeting at the corner.
When mipmapping, these 1-texel borders can be added recursively to all the specified mipmap levels. When texture borders are added
as described, then the GL_CLAMP wrap mode will eliminate any seaming artifacts.

Note that using the GL_REPEAT or GL_CLAMP with a constant border color is almost certain to cause objectionable seaming artifacts.
While these modes are legal for cube map textures and should work on each face as specified for 2D texturing, the result in surely incor-
rect for cube maps.

The texture wrap parameters are specified using the “texture as a whole” cube map target. Once face selection is performed for a cube
map texture, texture fetching and filtering operates just as it does for a 2D texture. This means that both the s and t wrap modes are
used, but not the r wrap mode. Here is an example of setting the wrap mode for a cube map texture:

 glTexParameteri(GL_TEXTURE_CUBE_MAP_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_CUBE_MAP_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

Note that because the default texture wrap mode is OpenGL is GL_REPEAT, you should always explicitly set the s and t wrap modes for
cube maps textures.

A.6 Texture Coordinate Generation Modes for Cube Map Textures
You are free to pass per-vertex (s,t,r) texture coordinates for use with cube map texturing. For example:

 glTexCoord3f(s,t,r); /* user-supplied direction vector for cube map texturing */
 glVertex3f(x,y,z);

In practice, it often makes sense to use one of OpenGL's texture coordinate generation modes. Two new texgen modes are added that
generate the eye-space reflection vector or normal vector in the (s,t,r) texture coordinates. The reflection map mode can be enabled like
this

3 When OpenGL 1.2 is not supported, the EXT_texture_clamp_to_edge extension supplies the identical functionality.
4 The GeForce and Quadro GPUs do not correctly support cube maps with texture borders; always use GL_CLAMP_TO_EDGE for cube

maps on GeForce and Quadro.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

28

 glTexGenfv(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT);
 glTexGenfv(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT);
 glTexGenfv(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT);
 glEnable(GL_TEXTURE_GEN_S);
 glEnable(GL_TEXTURE_GEN_T);
 glEnable(GL_TEXTURE_GEN_R);
The normal map mode can be enabled like this

 glTexGenfv(GL_S, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP_EXT);
 glTexGenfv(GL_T, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP_EXT);
 glTexGenfv(GL_R, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP_EXT);
 glEnable(GL_TEXTURE_GEN_S);
 glEnable(GL_TEXTURE_GEN_T);
 glEnable(GL_TEXTURE_GEN_R);

For these two modes to operate correctly, correct per-vertex normals must be supplied.

These new GL_REFLECTION_MAP_EXT and GL_NORMAL_MAP_EXT enumerants share the same respective values and functionality
as the GL_REFLECTION_MAP_NV and GL_NORMAL_MAP_NV enumerants provided by the NV_texgen_reflection extension
[16]. (The texgen reflection extension is typically used in the absence of cube maps to implement a dual-paraboloid map scheme [12]).

The GL_EYE_LINEAR texgen mode is also useful with cube maps as a way of generating the unnormalized view vector.

OpenGL's texture matrix is also very useful for manipulating cube map texture coordinates. The texture matrix can be used to rotate an
(s,t,r) vector from one space to another. For example, consider if your cube map texture is oriented in world coordinate space where M
is the matrix transform that moves from world coordinates to eye coordinates. You can load the inverse of the affine portion of M into
the texture matrix to rotate the eye-space reflection or normal vectors generated by GL_REFLECTION_MAP_EXT or
GL_NORMAL_MAP_EXT back into world space.

A.7 Cube Maps and Multitexture
Cube map texturing is orthogonal to multitexture. If the ARB_multitexture extension [25] is supported along with the
EXT_texture_cube_map extension, all the texture units must support cube map texturing. This means you can mix 2D texturing
and cube map texturing in a single pass if you have two texture units.

B THE OPENGL REGISTER COMBINERS EXTENSION
This appendix is an introduction to programming OpenGL’s register combiners functionality. OpenGL supports register combiners via
the NVIDIA-proprietary NV_register_combiners extension [14]. See Section 4.2 for an explanation of the register combiners
data flow; this discussion concentrates on the registers combiners API.

B.1 Enabling and Disabling Register Combiners
Enabling and disabling the register combiners is done as follows:

 glEnable(GL_REGISTER_COMBINERS_NV);
 glDisable(GL_REGISTER_COMBINERS_NV);

Register Enumerant Initial Value Input/Output Status

GL_ZERO Zero Read-only

GL_CONSTANT_COLOR0_NV Application-specified Read-only

GL_CONSTANT_COLOR1_NV Application-specified Read-only

GL_FOG Fog color and fog factor Read-only

GL_PRIMARY_COLOR_NV Interpolated primary (diffuse) color Read/write

GL_SECONDARY_COLOR_NV Interpolated secondary (specular) color Read/write

GL_SPARE0_NV RGB undefined, alpha is texture 0 alpha Read/write

GL_SPARE1_NV Undefined Read/write

GL_TEXTURE0_ARB Filtered texel for texture unit 0 Read/write

GL_TEXTURE1_ARB Filtered texel for texture unit 1 Read/write

GL_TEXTUREi_ARB Filtered texel for texture unit i Read/write

Table 2. Register combiners register set.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

29

When disabled, fragments are colored by OpenGL’s conventional texture environment application, color sum, and fog operations. When
enabled, the current state of the register combiners is used to color fragments. Figure 6 shows this. Initially, the register combiners
enable is disabled.

B.2 The Register Set
The number of registers in the register combiners register set is 8 plus the maximum number of texture units supported. Each register is
referred to by its enumerant. Registers are either read/write or read-only unless otherwise noted. See Table 2. See Section 4.2.1 for
more information about the register set.

B.3 Setting Combiner Parameters
Some register combiners parameters are not associated with a particular stage. These parameters are specified using the commands

 glCombinerParameterfvNV(GLenum pname, const GLfloat *params);
 glCombinerParameterivNV(GLenum pname, const GLint *params);
 glCombinerParameterfNV(GLenum pname, GLfloat param);
 glCombinerParameteriNV(GLenum pname, GLint param);

The four valid enumerants for pname for the above commands are listed in Table 4 along with each parameter’s initial value, type, and
number of values.

B.4 Configuring General Combiner Stages
The glCombinerInputNV and glCombinerOutputNV commands configure the input and output state for each general combiner
stage.

The glCombinerInputNV command specifies the input register, input mapping, and component usage for a particular variable (A, B,
C, or D) for a particular general combiner stage and portion. The command has the following prototype:

 glCombinerInputNV(GLenum stage,
 GLenum portion,
 GLenum variable,
 GLenum input,
 GLenum mapping,
 GLenum componentUsage);

The stage parameter is an enumerant of the form GL_COMBINERi_NV where i is greater or equal to zero and less than the maximum
number of general combiners supported. The maximum number of general combiners supported must be two or greater and can be

Input Mapping Enumerant Mapping Function Range to Range

GL_UNSIGNED_IDENTITY_NV max(0.0, x) [0,1] ⇒ [0,1]

GL_UNSIGNED_INVERT_NV 1.0 − min(max(0.0, x), 1.0) [0,1] ⇒ [1,0]

GL_EXPAND_NORMAL_NV 2.0 × max(0.0, x) – 1.0 [0,1] ⇒ [-1,1]

GL_EXPAND_NEGATE_NV -2.0 × max(0.0, x) + 1.0 [0,1] ⇒ [-1,1]

GL_HALF_BIAS_NORMAL_NV max(0.0, x) – 0.5 [0,1] ⇒ [-0.5,0.5]

GL_HALF_BIAS_NEGATE_NV −max(0.0, x) + 0.5 [0,1] ⇒ [0.5,-0.5]

GL_SIGNED_IDENTITY_NV x [-1,1] ⇒ [-1,1]

GL_SIGNED_NEGATE_NV −x [-1,1] ⇒ [1,-1]

Table 3. Input mappings for variable inputs.

Parameter Enumerant Initial Value Type Number of values

GL_CONSTANT_COLOR0_NV (0, 0, 0, 0) Color 4

GL_CONSTANT_COLOR1_NV (0, 0, 0, 0) Color 4

GL_NUM_GENERAL_COMBINERS_NV 1 Positive integer 1

GL_COLOR_SUM_CLAMP_NV True Boolean 1

Table 4. Register combiners parameters.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

30

determined by querying the GL_MAX_COMBINERS_NV implementation-defined limit. At least two general combiner stages are guar-
anteed.

The portion parameter must be either GL_RGB indicating the RGB portion of the combiner or GL_ALPHA indicating the alpha portion.

The variable parameter must be one of GL_VARIABLE_A_NV, GL_VARIABLE_B_NV, GL_VARIABLE_C_NV, or
GL_VARIABLE_D_NV and determines which respective variable of the specified combiner stage and portion is updated.

The input parameter names a register from the list in Table 2. The mapping parameter names an input mapping from the list in Table 3.
The componentUsage parameter must be either GL_RGB or GL_ALPHA if portion is GL_RGB or must be either GL_ALPHA or
GL_BLUE if portion is GL_ALPHA. Also, if the input parameter is GL_FOG, the componentUsage may not be GL_ALPHA (the alpha
portion of the fog register is the fog factor, which is not available for use until the final combiner stage).

Together, the stage, portion, and variable determine which variable’s input state to update. The specified variable is assigned the value
of the register named by input after the input mapping specified by mapping is performed. The portion of the register assigned is deter-
mined by componentUsage. If the portion is GL_RGB and componentUsage is GL_ALPHA, the register’s alpha value is smeared to form
an RGB vector.

The glCombinerOutputNV command specifies the output operations for a particular general combiner stage and portion. The com-
mand has the following prototype:

 glCombinerOutputNV(GLenum stage,
 GLenum portion,
 GLenum abOutput,
 GLenum cdOutput,
 GLenum sumOutput,
 GLenum scale,
 GLenum bias,
 GLboolean abDotProduct,
 GLboolean cdDotProduct,
 GLboolean muxSum);

The stage and portion parameters accept the same values accepted by glCombinerInputNV for these same parameter names. The
stage and portion parameters determine the output state for a particular general combiner stage and portion that the remaining parame-
ters will update.

The abOutput, cdOutput, and sumOutput parameters name registers (see Table 2) to which each particular output will be written. The
register must be a read/write register. The parameter GL_DISCARD_NV is also accepted by these three parameters. If
GL_DISCARD_NV is specified, the particular output is discarded. Each output register must be unique for the particular stage and
portion specified; multiple outputs however can be discarded.

The scale parameter must be one of GL_NONE (meaning scale by 1.0), GL_SCALE_BY_TWO_NV, GL_SCALE_BY_FOUR_NV, or
GL_SCALE_BY_ONE_HALF_NV. The bias parameter must be one of GL_NONE (meaning bias by 0.0) or
GL_BIAS_BY_NEGATIVE_ONE_HALF_NV. The specified scale and bias is applied to all three outputs before they are written to
their specified registers. If the scale parameter is either GL_SCALE_BY_ONE_HALF_NV or GL_SCALE_BY_FOUR_NV, then the bias
parameter must be GL_NONE.

The abDotProduct parameter is zero if the AB output should compute a product and is non-zero if the AB product should instead com-
pute a 3-element dot product. The cdDotProduct parameter is zero if the CD output should compute a product and is non-zero if the CD
product should instead compute a 3-element dot product. The abDotProduct and cdDotProduct parameters must be zero if the portion
parameter is GL_ALPHA. If either of the abDotProduct or cdDotProduct parameters are non-zero, then the sumOutput parameter must
be set to GL_DISCARD_NV. The muxSum parameter is zero if the ABCD output should compute AB+CD and is non-zero if the ABCD
output should mux (select) between the product AB or CD.

See Section 4.2.2 for more information on the operation of general combiner stages.

B.5 Configuring the Final Combiner Stage
The glFinalCombinerInputNV command specifies the input register, input mapping, and component usage for final combiner
variables. The command has the following prototype:

 glFinalCombinerInputNV(GLenum variable,
 GLenum input,
 GLenum mapping,
 GLenum componentUsage);

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

31

The variable parameter must be one of GL_VARIABLE_A_NV, GL_VARIABLE_B_NV, GL_VARIABLE_C_NV,
GL_VARIABLE_D_NV, GL_VARIABLE_E_NV, GL_VARIABLE_F_NV, or GL_VARIABLE_G_NV, and these enumerants correspond
to the variables A, B, C, D, E, F, and G respectively.

The input parameter names a register from the list in Table 2. The input parameter may also be either GL_E_TIMES_F_NV or
GL_SPARE0_PLUS_SECONDARY_COLOR_NV; these additional two inputs correspond to the EF product and spare0+secondaryColor
pseudo-registers. However, the EF product pseudo-register may only be used as an input for the A, B, C, and D variables. The
spare0+secondaryColor pseudo-register may only be used as an input for the B, C, and D variables.

The mapping parameter must be either GL_UNSIGNED_IDENTITY_NV or GL_UNSIGNED_INVERT_NV. These input mappings
operate as specified in Table 3.

The componentUsage parameter may be either GL_RGB or GL_ALPHA. However, the componentUsage must be GL_ALPHA if the
variable parameter is GL_VARIABLE_G_NV. The componentUsage must GL_RGB for any variable inputting from either the EF
product or spare0+secondaryColor pseudo-registers.

See Section 4.2.3 for more information on the operation of the final combiner stage.

B.6 Initial Register Combiners State
The register combiners enable is initially disabled.

The initial state for the inputs of each general combiner stage and portion is in Table 5.

The initial state for the outputs for each general combiner stage and portion is GL_NONE for the scale and bias, GL_DISCARD_NV for
the AB output and the CD output, GL_SPARE0_NV for the ABCD output, and false for the AB dot product, the CD dot product, and the
ABCD mux.

The initial state for the final combiner inputs is in Table 5.

The remaining initial register combiners state is listed in Table 4.

Portion Variable
Initial

Input Register

Initial
Component

Usage

Initial

Input Mapping

RGB A GL_PRIMARY_COLOR_NV GL_RGB GL_UNSIGNED_IDENTITY_NV

RGB B GL_TEXTURE#_ARB GL_RGB GL_UNSIGNED_IDENTITY_NV

RGB C GL_ZERO GL_RGB GL_UNSIGNED_IDENTITY_NV

RGB D GL_ZERO GL_RGB GL_UNSIGNED_IDENTITY_NV

alpha A GL_PRIMARY_COLOR_NV GL_ALPHA GL_UNSIGNED_IDENTITY_NV

alpha B GL_TEXTURE#_ARB GL_ALPHA GL_UNSIGNED_IDENTITY_NV

alpha C GL_ZERO GL_ALPHA GL_UNSIGNED_IDENTITY_NV

alpha D GL_ZERO GL_ALPHA GL_UNSIGNED_IDENTITY_NV

Table 5. Initial general combiner state for the both RGB and alpha portions.
The # in GL_TEXTURE#_ARB is the number of the particular general combiner stage.

Final Stage
Variable

Initial

Input Register

Initial
Component

Usage

Initial

Input Mapping

A GL_FOG GL_ALPHA GL_UNSIGNED_IDENTITY_NV

B GL_SPARE0_PLUS_SECONDARY_COLOR_NV GL_RGB GL_UNSIGNED_IDENTITY_NV

C GL_FOG GL_RGB GL_UNSIGNED_IDENTITY_NV

D GL_ZERO GL_RGB GL_UNSIGNED_IDENTITY_NV

E GL_ZERO GL_RGB GL_UNSIGNED_IDENTITY_NV

F GL_ZERO GL_RGB GL_UNSIGNED_IDENTITY_NV

G GL_SPARE0_NV GL_ALPHA GL_UNSIGNED_IDENTITY_NV

Table 6. Initial final combiner state.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

32

B.7 Combiner Queries
All the register combiners state can be queried. The following query commands are provided:

 void glGetCombinerInputParameterfvNV(GLenum stage, GLenum portion, GLenum variable,
 GLenum pname, const GLfloat *params);
 void glGetCombinerInputParameterivNV(GLenum stage, GLenum portion, GLenum variable,
 GLenum pname, const GLint *params);
 void glGetCombinerOutputParameterfvNV(GLenum stage, GLenum portion,
 GLenum pname, const GLfloat *params);
 void glGetCombinerOutputParameterivNV(GLenum stage, GLenum portion,
 GLenum pname, GLint *params);
 void glGetFinalCombinerInputParameterfvNV(GLenum variable,
 GLenum pname, const GLfloat *params);
 void glGetFinalCombinerInputParameterivNV(GLenum variable,
 GLenum pname, const GLfloat *params);

The glGetCombinerInputParameterfvNV, glGetCombinerInputParameterivNV, glGetCombinerOutput-
ParameterfvNV, and glGetCombinerOutputParameterivNV parameter stage may be one of GL_COMBINER0_NV,
GL_COMBINER1_NV, and so on, indicating which general combiner stage to query. The glGetCombinerInput-
ParameterfvNV, glGetCombinerInputParameterivNV, glGetCombinerOutputParameterfvNV, and glGetCom-
binerOutputParameterivNV parameter portion may be either GL_RGB or GL_ALPHA, indicating which portion of the general
combiner stage to query. The glGetCombinerInputParameterfvNV and glGetCombinerInputParameterivNV
parameter variable may be one of GL_VARIABLE_A_NV, GL_VARIABLE_B_NV, GL_VARIABLE_C_NV, or
GL_VARIABLE_D_NV, indicating which variable of the general combiner stage to query. The glGetFinalCombinerInput-
ParameterfvNV and glGetFinalCombinerInputParameterivNV parameter variable may be one of
GL_VARIABLE_A_NV, GL_VARIABLE_B_NV, GL_VARIABLE_C_NV, GL_VARIABLE_D_NV, GL_VARIABLE_E_NV,
GL_VARIABLE_F_NV, or GL_VARIABLE_G_NV.

C COMPUTING TANGENT-SPACE LIGHT AND HALF-ANGLE VECTORS
This appendix shows how to compute normalized tangent-space light and half-angle vectors. The updateTangentSpaceVectors
routine is passed an array of numVertices vertices and a second array of numVertices orthogonal basises for each corresponding vertex.
The tangent-space light vector and half angle in each element of the vertex array is updated based on the vertex’s corresponding
orthonormal basis in the array axis and the object-space light and eye position referenced by lightPosition and eyePosition respectively.

typedef struct { /* A position or direction vector. */
 GLfloat x;
 GLfloat y;
 GLfloat z;
} Vector;

typedef struct { /* Vertex information. */
 Vector position; /* Object-space vertex position. */
 Vector tangentSpaceLightVector; /* Tangent-space light vector. */
 Vector tangentSpaceHalfAngleVector; /* Tangent-space half-angle vector. */
 GLshort s, t; /* Decal texture coordinates. */
} Vertex;

typedef struct {
 Vector tangent; /* Object-space tangent vector. */
 Vector binormal; /* Object-space binormal vector. */
 Vector normal; /* Object-space normal vector. */
} OrthoNormalBasis;

void updateTangentSpaceVectors(int numVertices, Vertex *vertex, OrthoNormalBasis *axis,
 Vector *lightPosition, Vector *eyePosition)
{
 int i;
 float x, y, z, xx, yy, zz, invlen;

 for (i=0; i<numVertices; i++) {
 /* Subtract vertex position from the light position to compute the
 (unnormalized) direction vector to the light in object space. */
 x = lightPosition->x - vertex[i].position.x;
 y = lightPosition->y - vertex[i].position.y;

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

33

 z = lightPosition->z - vertex[i].position.z;

 /* Rotate the direction vector to the light into the vertex's
 tangent space. */
 xx = x*axis[i].tangent.x + y*axis[i].tangent.y + z*axis[i].tangent.z;
 yy = x*axis[i].binormal.x + y*axis[i].binormal.y + z*axis[i].binormal.z;
 zz = x*axis[i].normal.x + y*axis[i].normal.y + z*axis[i].normal.z;

 /* Normalize the tangent-space light vector. */
 invlen = 1.0/sqrt(xx*xx+yy*yy+zz*zz);
 vertex[i].tangentSpaceLightVector.x = xx*invlen;
 vertex[i].tangentSpaceLightVector.y = yy*invlen;
 vertex[i].tangentSpaceLightVector.z = zz*invlen;

 /* Subtract vertex position from the eye position to compute the
 (unnormalized) direction vector to the eye in object space. */
 x = eyePosition->x - vertex[i].position.x;
 y = eyePosition->y - vertex[i].position.y;
 z = eyePosition->z - vertex[i].position.z;

 /* Rotate the direction vector to the eye into the vertex's
 tangent space. */
 xx = x*axis[i].tangent.x + y*axis[i].tangent.y + z*axis[i].tangent.z;
 yy = x*axis[i].binormal.x + y*axis[i].binormal.y + z*axis[i].binormal.z;
 zz = x*axis[i].normal.x + y*axis[i].normal.y + z*axis[i].normal.z;

 /* Normalize the tangent-space eye vector. */
 invlen = 1.0/sqrt(xx*xx+yy*yy+zz*zz);
 xx = xx*invlen;
 yy = yy*invlen;
 zz = zz*invlen;

 /* Form the half-angle vector by adding the normalized light and eye vectors. */
 xx += vertex[i].tangentSpaceLightVector.x;
 yy += vertex[i].tangentSpaceLightVector.y;
 zz += vertex[i].tangentSpaceLightVector.z;
 invlen = 1.0/sqrt(xx*xx+yy*yy+zz*zz);

 /* Store the normalized tangent-space half-angle vector. */
 vertex[i].tangentSpaceHalfAngleVector.x = xx*invlen;
 vertex[i].tangentSpaceHalfAngleVector.y = yy*invlen;
 vertex[i].tangentSpaceHalfAngleVector.z = zz*invlen;
 }
}

D CONSTRUCTING A NORMALIZATION CUBE MAP
This appendix shows how to construct a normalization cube map for use with the OpenGL cube map texture extension. The constructed
cube map take an unnormalized 3D direction vector as an (s,t,r) texture coordinate and return an RGB vector that when expanded from
the [0,1] range to the [-1,1] range using the register combiners’ GL_EXPAND_NORMAL input mapping is the normalization of (s,t,r).

The makeNormalizeVectorCubeMap routine makes a cube map texture with a face resolution of size by size texels. The
getCubeVector routine is a helper routine.

static void getCubeVector(int i, int cubesize, int x, int y, float *vector)
{
 float s, t, sc, tc, mag;

 s = ((float)x + 0.5) / (float)cubesize;
 t = ((float)y + 0.5) / (float)cubesize;
 sc = s*2.0 - 1.0;
 tc = t*2.0 - 1.0;

 switch (i) { /* See Table 1 for the rationale for these cases. */
 case 0: vector[0] = 1.0; vector[1] = -tc; vector[2] = -sc; break;
 case 1: vector[0] = -1.0; vector[1] = -tc; vector[2] = sc; break;
 case 2: vector[0] = sc; vector[1] = 1.0; vector[2] = tc; break;

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

34

 case 3: vector[0] = sc; vector[1] = -1.0; vector[2] = -tc; break;
 case 4: vector[0] = sc; vector[1] = -tc; vector[2] = 1.0; break;
 case 5: vector[0] = -sc; vector[1] = -tc; vector[2] = -1.0; break;
 }

 mag = 1.0/sqrt(vector[0]*vector[0] + vector[1]*vector[1] + vector[2]*vector[2]);
 vector[0] *= mag;
 vector[1] *= mag;
 vector[2] *= mag;
}

int makeNormalizeVectorCubeMap(int size)
{
 float vector[3];
 int i, x, y;
 GLubyte *pixels;

 pixels = (GLubyte*) malloc(size*size*3);
 if (pixels == NULL) {
 return 0; /* Memory allocation failed. */
 }
 glTexParameteri(GL_TEXTURE_CUBE_MAP_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_CUBE_MAP_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_CUBE_MAP_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_CUBE_MAP_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 for (i = 0; i < 6; i++) {
 for (y = 0; y < size; y++) {
 for (x = 0; x < size; x++) {
 getCubeVector(i, size, x, y, vector);
 pixels[3*(y*size+x) + 0] = 128 + 127*vector[0];
 pixels[3*(y*size+x) + 1] = 128 + 127*vector[1];
 pixels[3*(y*size+x) + 2] = 128 + 127*vector[2];
 }
 }
 glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X_EXT+i, 0, GL_RGB8,
 size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, pixels);
 }
 free(pixels);
 return 1; /* Success. */
}

E CONSTRUCTING A NORMAL MAP FROM A HEIGHT FIELD
This appendix shows how construct a normal map suitable for the described bump mapping technique. The routine
convertHeightFieldToNormal map takes an array of pixels of size wr by hr. The routine generates an array of BGRA data of
size w by h. If wr and hr are equal to w and h respectively, then the height field is assumed to wrap. If wr and hr are each one greater
than w and h respectively, the pixels height field array is assumed to have an extra border of elements to the bottom and right that will be
sampled (instead of wrapping) when constructing the height field. The returned array of data is intended to specify the base level of a 2D
texture that will be used as a normal map. Because the returned array is intended for use as a texture image, the w and h parameters
should be powers of two. Note that the color component ordering for this texture is BGRA since that is most efficient for texture down-
load on NVIDA GPUs.

/* Structure to encode a normal like an 8-bit unsigned BGRA vector. */
typedef struct {
 /* Normalized tangent-space perturbed surface normal. The
 [0,1] range of (nx,ny,nz) gets expanded to the [-1,1]
 range in the combiners. The (nx,ny,nz) is always a
 normalized vector. */
 GLubyte nz, ny, nx;

 /* A scaling factor for the normal. Mipmap level 0 has a constant
 magnitude of 1.0, but down-sampled mipmap levels keep track of
 the unnormalized vector sum length. For diffuse per-pixel
 lighting, it is preferable to make N' be the _unnormalized_
 vector, but for specular lighting to work reasonably, the

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

35

 normal vector should be normalized. In the diffuse case, we
 can multiply by the "mag" to get the possibly shortened
 unnormalized length. */
 GLubyte mag;
} Normal;

/* Convert a height field image into a normal map. This involves
 differencing each texel with its right and upper neighbor, then
 normalizing the cross product of the two difference vectors. */
Normal *convertHeightFieldToNormalMap(GLubyte *pixels, int w, int h,
 int wr, int hr, float scale)
{
 const float oneOver255 = 1.0/255.0;
 int i, j;
 Normal *nmap;
 float sqlen, reciplen, nx, ny, nz, c, cx, cy, dcx, dcy;

 nmap = malloc(sizeof(Normal)*w*h);
 if (nmap == NULL) {
 return NULL; /* Memory allocation failure. */
 }

 for (i=0; i<h; i++) {
 for (j=0; j<w; j++) {
 /* Expand [0,255] texel values to the [0,1] range. */
 c = pixels[i*wr + j] * oneOver255;
 /* Expand the texel to its right. */
 cx = pixels[i*wr + (j+1)%wr] * oneOver255;
 /* Expand the texel one up. */
 cy = pixels[((i+1)%hr)*wr + j] * oneOver255;
 dcx = scale * (c - cx);
 dcy = scale * (c - cy);

 /* Normalize the vector. */
 sqlen = dcx*dcx + dcy*dcy + 1;
 reciplen = 1.0/sqrt(sqlen);
 nx = dcy*reciplen;
 ny = -dcx*reciplen;
 nz = reciplen;
 /* Repack the normalized vector into an RGB unsigned byte
 vector in the normal map image. */
 nmap[i*w+j].nx = 128 + 127*nx;
 nmap[i*w+j].ny = 128 + 127*ny;
 nmap[i*w+j].nz = 128 + 127*nz;
 /* The highest resolution mipmap level always has a
 unit length magnitude. */
 nmap[i*w+j].mag = 255;
 }
 }
 return nmap;
}

F LOADING AND MIPMAPPING A NORMAL MAP
This appendix shows how to load a normal map constructed by the convertHeightFieldToNormalMap shown in Appendix E.
The convertHeightFieldAndLoadNormalMapTexture routine calls convertHeightFieldToNormalMap to generate a
normal map image. This image is passed to OpenGL as the base level of a 2D texture. Then this image is recursively down-sampled and
used to generate all of the normal map texture’s mipmap levels. The down sampling process is careful to range-expand, average, renor-
malize, and range-compress the RGB vector on each down sampling and also keeps track of the magnitude of the successive denormali-
zations of the vector in the alpha component.

/* Given a normal map, create a down-sampled version of the normal map
 at half the width and height. Use a 2x2 box filter to create each
 down-sample. gluBuild2DMipmaps is not suitable because each down-sampled
 texel must also be renormalized. */

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

36

Normal *downSampleNormalMap(Normal *old, int w2, int h2, int w, int h)
{
 const float oneOver127 = 1.0/127.0;
 const float oneOver255 = 1.0/255.0;

 Normal *nmap;
 float x, y, z, l, invl;
 float mag00, mag01, mag10, mag11;
 int i, j, ii, jj;

 /* Allocate space for the down-sampled normal map level. */
 nmap = malloc(sizeof(Normal)*w*h);
 if (NULL) {
 return NULL; /* Memory allocation failure. */
 }

 for (i=0; i<h2; i+=2) {
 for (j=0; j<w2; j+=2) {

 /* The "%w2" and "%h2" modulo arithmetic makes sure that
 Nx1 and 1xN normal map levels are handled correctly. */

 /* Fetch the magnitude of the four vectors to be down-sampled. */
 mag00 = oneOver255 * old[(i) *w2 + (j)].mag;
 mag01 = oneOver255 * old[(i) *w2 + ((j+1)%h2)].mag;
 mag10 = oneOver255 * old[((i+1)%w2)*w2 + (j)].mag;
 mag11 = oneOver255 * old[((i+1)%w2)*w2 + ((j+1)%h2)].mag;

 /* Sum 2x2 footprint of red component scaled back to [-1,1] range. */
 x = mag00 * (oneOver127 * old[(i) *w2 + (j)].nx - 1.0);
 x += mag01 * (oneOver127 * old[(i) *w2 + ((j+1)%h2)].nx - 1.0);
 x += mag10 * (oneOver127 * old[((i+1)%w2)*w2 + (j)].nx - 1.0);
 x += mag11 * (oneOver127 * old[((i+1)%w2)*w2 + ((j+1)%h2)].nx - 1.0);

 /* Sum 2x2 footprint of green component scaled back to [-1,1] range. */
 y = mag00 * (oneOver127 * old[(i) *w2 + (j)].ny - 1.0);
 y += mag01 * (oneOver127 * old[(i) *w2 + ((j+1)%h2)].ny - 1.0);
 y += mag10 * (oneOver127 * old[((i+1)%w2)*w2 + (j)].ny - 1.0);
 y += mag11 * (oneOver127 * old[((i+1)%w2)*w2 + ((j+1)%h2)].ny - 1.0);

 /* Sum 2x2 footprint of blue component scaled back to [-1,1] range. */
 z = mag00 * (oneOver127 * old[(i) *w2 + (j)].nz - 1.0);
 z += mag01 * (oneOver127 * old[(i) *w2 + ((j+1)%h2)].nz - 1.0);
 z += mag10 * (oneOver127 * old[((i+1)%w2)*w2 + (j)].nz - 1.0);
 z += mag11 * (oneOver127 * old[((i+1)%w2)*w2 + ((j+1)%h2)].nz - 1.0);

 /* Compute length of the (x,y,z) vector. */
 l = sqrt(x*x + y*y + z*z);
 if (l == 0.0) {
 /* Ugh, a zero length vector. Avoid division by zero and just
 use the unperturbed normal (0,0,1). */
 x = 0.0;
 y = 0.0;
 z = 1.0;
 } else {
 /* Normalize the vector to unit length. */
 invl = 1.0/l;
 x = x*invl;
 y = y*invl;
 z = z*invl;
 }
 ii = i >> 1;
 jj = j >> 1;

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

37

 /* Pack the normalized vector into an RGB unsigned byte vector
 in the down-sampled image. */
 nmap[ii*w+jj].nx = 128 + 127*x;
 nmap[ii*w+jj].ny = 128 + 127*y;
 nmap[ii*w+jj].nz = 128 + 127*z;

 /* Store the magnitude of the average vector in the alpha
 component so we keep track of the magnitude. */
 l = l/4.0;
 if (l > 1.0) {
 nmap[ii*w+jj].mag = 255;
 } else {
 nmap[ii*w+jj].mag = 255*l;
 }
 }
 }
 free(old);
 return nmap;
}

/* Convert the supplied height field image into a normal map (a normalized
 vector range-compressed to the [0,1] range in RGB and A=1.0). Load the
 base texture level, then recursively down-sample and load successive
 normal map levels (being careful to expand, average, renormalize,
 and unexpand each RGB value and also accumulate the average vector
 shortening in alpha). */
void convertHeightFieldAndLoadNormalMapTexture(GLubyte *pixels, int w, int h,
 int wr, int hr, float scale)
{
 Normal *nmap;
 int level, nw, nh;

 nmap = convertHeightFieldToNormalMap(pixels, w, h, wr, hr, scale);

 level = 0;
 /* Load original maximum resolution normal map. */
 /* The BGRA color component ordering is fastest for NVIDIA. */
 glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA8, w, h, level,
 GL_BGRA_EXT, GL_UNSIGNED_BYTE, &nmap->nz);

 /* Down-sample the normal map for mipmap levels down to 1x1. */
 while (w > 1 || h > 1) {
 level++;

 /* Half width and height but not beyond one. */
 nw = w >> 1;
 nh = h >> 1;
 if (nw == 0) nw = 1;
 if (nh == 0) nh = 1;
 nmap = downSampleNormalMap(nmap, w, h, nw, nh);

 glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA8, nw, nh, 0,
 GL_BGRA_EXT, GL_UNSIGNED_BYTE, &nmap->nz);

 /* Make the new width and height the old width and height. */
 w = nw;
 h = nh;
 }
 free(nmap);
}

G CONFIGURE THE REGISTER COMBINERS FOR AMBIENT AND DIFFUSE ILLUMI-
NATION

This appendix shows how to configure the register combiners to compute the ambient and diffuse illumination for the bump-mapping
technique as described in Section 5.4.

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

38

void configCombinersForAmbientAndDiffusePass(void)
{
 GLfloat Iambient[4] = {0.1, 0.1, 0.1, 0.0}; /* Ambient illumination. */
 GLfloat Kdiffuse[4] = {0.9, 1.0, 1.0, 0.0}; /* Diffuse material characteristic. */

 glCombinerParameteriNV(GL_NUM_GENERAL_COMBINERS_NV, 2);
 glCombinerParameterfvNV(GL_CONSTANT_COLOR0_NV, Iambient);
 glCombinerParameterfvNV(GL_CONSTANT_COLOR1_NV, Kdiffuse);

 /*** GENERAL Combiner ZERO, RGB portion. ***/
 /* Argb = 3x3 matrix column1 = expand(texture0rgb) = N' */
 glCombinerInputNV(GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_A_NV,
 GL_TEXTURE0_ARB, GL_EXPAND_NORMAL_NV, GL_RGB);
 /* Brgb = expand(texture1rgb) = L */
 glCombinerInputNV(GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_B_NV,
 GL_TEXTURE1_ARB, GL_EXPAND_NORMAL_NV, GL_RGB);

 /* spare0rgb = Argb dot Brgb
 = expand(texture0rgb) dot expand(texture1rgb) = L dot N' */
 glCombinerOutputNV(GL_COMBINER0_NV, GL_RGB,
 GL_SPARE0_NV, GL_DISCARD_NV, GL_DISCARD_NV,
 GL_NONE, GL_NONE, GL_TRUE, GL_FALSE, GL_FALSE);

 /*** GENERAL Combiner ZERO, Alpha portion. ***/
 /* Aa = 1 */
 glCombinerInputNV(GL_COMBINER0_NV, GL_ALPHA, GL_VARIABLE_A_NV,
 GL_ZERO, GL_UNSIGNED_INVERT_NV, GL_ALPHA);
 /* Ba = expand(texture1b) = Lz */
 glCombinerInputNV(GL_COMBINER0_NV, GL_ALPHA, GL_VARIABLE_B_NV,
 GL_TEXTURE1_ARB, GL_EXPAND_NORMAL_NV, GL_BLUE);
 /* Ca = 1 */
 glCombinerInputNV(GL_COMBINER0_NV, GL_ALPHA, GL_VARIABLE_C_NV,
 GL_ZERO, GL_UNSIGNED_INVERT_NV, GL_ALPHA);
 /* Da = expand(texture1b) = Lz */
 glCombinerInputNV(GL_COMBINER0_NV, GL_ALPHA, GL_VARIABLE_D_NV,
 GL_TEXTURE1_ARB, GL_EXPAND_NORMAL_NV, GL_BLUE);

 /* spare0a = 4*(1*Lz + 1*Lz) = 8*expand(texture1b) */
 glCombinerOutputNV(GL_COMBINER0_NV, GL_ALPHA,
 GL_DISCARD_NV, GL_DISCARD_NV, GL_SPARE0_NV,
 GL_SCALE_BY_FOUR_NV, GL_NONE, GL_FALSE, GL_FALSE, GL_FALSE);

 /*** GENERAL Combiner ONE, RGB portion. ***/
 /* Argb = spare0rgb = L dot N' */
 glCombinerInputNV(GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_A_NV,
 GL_SPARE0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* Brgb = expand(texture0a) = normal map denormalization factor */
 glCombinerInputNV(GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_B_NV,
 GL_TEXTURE0_ARB, GL_UNSIGNED_IDENTITY_NV, GL_ALPHA);

 /* spare0rgb = Argb Brgb = L dot N' scaled by the normal map denormalization factor */
 glCombinerOutputNV(GL_COMBINER1_NV, GL_RGB,
 GL_SPARE0_NV, GL_DISCARD_NV, GL_DISCARD_NV,
 GL_NONE, GL_NONE, GL_TRUE, GL_FALSE, GL_FALSE);

 /*** GENERAL Combiner ONE, Alpha portion. ***/
 /* Discard all outputs. */
 glCombinerOutputNV(GL_COMBINER1_NV, GL_ALPHA,
 GL_DISCARD_NV, GL_DISCARD_NV, GL_DISCARD_NV,
 GL_NONE, GL_NONE, GL_FALSE, GL_FALSE, GL_FALSE);

 /*** FINAL Combiner. ***/
 /* A = spare0a = per-pixel self-shadowing term */
 glFinalCombinerInputNV(GL_VARIABLE_A_NV,

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

39

 GL_SPARE0_NV, GL_UNSIGNED_IDENTITY_NV, GL_ALPHA);
 /* B = EF */
 glFinalCombinerInputNV(GL_VARIABLE_B_NV,
 GL_E_TIMES_F_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* C = zero */
 glFinalCombinerInputNV(GL_VARIABLE_C_NV,
 GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* D = C0 = ambient illumination contribution */
 glFinalCombinerInputNV(GL_VARIABLE_D_NV,
 GL_CONSTANT_COLOR0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* E = C1 = diffuse material characteristic */
 glFinalCombinerInputNV(GL_VARIABLE_E_NV,
 GL_CONSTANT_COLOR1_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* F = spare0rgb = diffuse illumination contribution = L dot N' */
 glFinalCombinerInputNV(GL_VARIABLE_F_NV,
 GL_SPARE0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* diffuse RGB color = A*E*F + D = diffuse modulated by self-shadowing term and the
 diffuse material characteristic + ambient */

 /* G = spare0a = self-shadowing term = 8*expand(texture1b) */
 glFinalCombinerInputNV(GL_VARIABLE_G_NV,
 GL_SPARE0_NV, GL_UNSIGNED_IDENTITY_NV, GL_ALPHA);

 glEnable(GL_REGISTER_COMBINERS_NV);
}

H CONFIGURE THE REGISTER COMBINERS FOR SPECULAR ILLUMINATION
This appendix shows how to configure the register combiners to compute the specular illumination for the bump-mapping technique as
described in Section 5.5.

void configCombinersForSpecular(void)
{
 glCombinerParameteriNV(GL_NUM_GENERAL_COMBINERS_NV, 2);

 /*** GENERAL Combiner ZERO, RGB portion. ***/
 /* Argb = 3x3 matrix column1 = expand(texture0rgb) = N' */
 glCombinerInputNV(GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_A_NV,
 GL_TEXTURE0_ARB, GL_EXPAND_NORMAL_NV, GL_RGB);
 /* Brgb = expand(texture1rgb) = H */
 glCombinerInputNV(GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_B_NV,
 GL_TEXTURE1_ARB, GL_EXPAND_NORMAL_NV, GL_RGB);

 /* spare0rgb = Argb dot Brgb = expand(texture0rgb) dot expand(texture1rgb)
 = N' dot H */
 glCombinerOutputNV(GL_COMBINER0_NV, GL_RGB,
 GL_SPARE0_NV, GL_DISCARD_NV, GL_DISCARD_NV,
 GL_NONE, GL_NONE, GL_TRUE, GL_FALSE, GL_FALSE);

 /*** GENERAL Combiner ZERO, Alpha portion. ***/
 /* Aa = texture1b = unexpanded Hz */
 glCombinerInputNV(GL_COMBINER0_NV, GL_ALPHA, GL_VARIABLE_A_NV,
 GL_TEXTURE1_ARB, GL_UNSIGNED_IDENTITY_NV, GL_BLUE);
 /* Ba = 1 */
 glCombinerInputNV(GL_COMBINER0_NV, GL_ALPHA, GL_VARIABLE_B_NV,
 GL_ZERO, GL_UNSIGNED_INVERT_NV, GL_ALPHA);

 /* spare0a = 1 * texture1b = unexpanded Hz */
 glCombinerOutputNV(GL_COMBINER0_NV, GL_ALPHA,
 GL_SPARE0_NV, GL_DISCARD_NV, GL_DISCARD_NV,
 GL_NONE, GL_NONE, GL_FALSE, GL_FALSE, GL_FALSE);

 /*** GENERAL Combiner ONE, RGB portion. ***/
 /* Argb = 0 */
 glCombinerInputNV(GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_A_NV,
 GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB);

GDC 2000: Advanced OpenGL A Practical and Robust Bump-mapping
Game Development Technique for Today's GPUs

40

 /* Brgb = 0 */
 glCombinerInputNV(GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_B_NV,
 GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* Crgb = spare0rgb = H dot N' */
 glCombinerInputNV(GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_C_NV,
 GL_SPARE0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* Drgb = spare0rgb = H dot N' */
 glCombinerInputNV(GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_D_NV,
 GL_SPARE0_NV, GL_SIGNED_IDENTITY_NV, GL_RGB);

 /* spare0rgb = ((spare0a >= 0.5) ? spare0rgb^2 : 0)
 = ((H dot N > 0) ? (H dot N')^2 : 0) */
 glCombinerOutputNV(GL_COMBINER1_NV, GL_RGB,
 GL_DISCARD_NV, GL_DISCARD_NV, GL_SPARE0_NV,
 GL_NONE, GL_NONE, GL_FALSE, GL_FALSE, GL_TRUE);

 /*** GENERAL Combiner ONE, Alpha portion. ***/
 /* Discard all outputs. */
 glCombinerOutputNV(GL_COMBINER1_NV, GL_ALPHA,
 GL_DISCARD_NV, GL_DISCARD_NV, GL_DISCARD_NV,
 GL_NONE, GL_NONE, GL_FALSE, GL_FALSE, GL_FALSE);

 /*** FINAL Combiner. ***/
 /* A = EF */
 glFinalCombinerInputNV(GL_VARIABLE_A_NV,
 GL_E_TIMES_F_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* B = EF */
 glFinalCombinerInputNV(GL_VARIABLE_B_NV,
 GL_E_TIMES_F_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* C = zero */
 glFinalCombinerInputNV(GL_VARIABLE_C_NV,
 GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* D = zero = no extra specular illumination contribution */
 glFinalCombinerInputNV(GL_VARIABLE_D_NV,
 GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* F = spare0rgb = (H dot N')^2 */
 glFinalCombinerInputNV(GL_VARIABLE_E_NV,
 GL_SPARE0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* F = spare0rgb = (H dot N')^2 */
 glFinalCombinerInputNV(GL_VARIABLE_F_NV,
 GL_SPARE0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
 /* specular RGB color = A*B = (E*F)*(E*F) = (H dot N')^8 */

 /* G = 0 */
 glFinalCombinerInputNV(GL_VARIABLE_G_NV,
 GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_ALPHA);

 glEnable(GL_REGISTER_COMBINERS_NV);
}

	Abstract
	Introduction
	Bump Mapping Mathematics
	Classic Height Field Bump Mapping
	Offset Vector Bump Maps
	Vector Rotation Bump Maps
	Bumped Diffuse Lighting
	Bumped Diffuse Lighting
	Bump Map Filtering for Diffuse Lighting

	Bumped Specular Lighting
	Blinn Bumped Specular Lighitng
	Phong Bumped Specular Lighting
	Bump Map Filtering for Specular Lighting

	Bump Map Representation
	Height Fields
	Vector Offset Maps
	Normal Perturbation Maps

	Previous Hardware Approaches
	Texture Embossing
	Dedicated Hardware Schemes

	NVIDIA GPU Features
	Cube Map Texturing
	Register Combiners
	The Register Set
	General Combiner Stage Operation
	Final Combiner Stage Operation
	Practical Details

	A New Bump-mapping Technique
	Per-vertex Computations
	Per-vertex Vector Interpolation and Normalization
	Normal Map Construction
	Ambient and Diffuse Illumination
	Specular Illumination
	Other Effects
	Without Special Features

	Conclusions
	References
	Appendices
	The OpenGL Cube Map Extension
	New Cube Map Texture Targets
	Setting the Images for a Cube Map Texture
	Enabling and Disabling Cube Map Textures
	Mapping Texture Coordinates to Cube Map Faces
	Texture Wrapping for Cube Map Textures
	Texture Coordinate Generation Modes for Cube Map Textures
	Cube Maps and Multitexture

	The OpenGL Register Combiners Extensions
	Enabling and Disabling Register Combiners
	The Register Set
	Setting Combiner Parameters
	Configuring general Combiner Stages
	Configuring the Final Combiner Stage
	Initial Register Combiners Stage
	Combiner Queries

	Computing Tangent-space Light and Half-angle Vectors
	Constructing a Normalization Cube Map
	Constructing a Normal Map from a Height Field
	Loading and Mipmapping a Normal Map
	Configure the Register Combiners for Ambient and Diffuse Illumination
	Configure the Register Combiners for Specular Illumination

