# **Real-Time Rendering**

## **Perception Issues**





#### What for?



- We want to exploit human visual system
  - Try not to draw what cannot be perceived
  - A lot can be faked ...
- We want good quality, even in real time
  - Know key aspects of quality
  - Avoid artifacts
- Topics:
  - Intensity, gamma correction
  - Motion, flicker
  - Latency
  - Resolution



#### **Intensity and Brightness**



- Eye has nonlinear response to intensity
- Intensity I: physical intensity
- Brightness B: perceived intensity
- Psychophysical models:
  - Relation of
    - small increments of Brightness (dB)
    - small increments of Intensity (dl)
  - give differential equation
  - **I** ... allow calculating  $\mathbf{B} = f(\mathbf{I})$





- Weber's law: describes threshold intensity
  - Minimum visible contrast is 1%
    dl/l = 0.01
- Weber-Fechner law: generalization
  - $\mathbf{B} = \mathbf{k} \cdot \mathbf{d} / \mathbf{I} \rightarrow \mathbf{B} = \mathbf{k} \cdot \ln \left( \mathbf{I} / \mathbf{I}_0 \right)$
  - For Intensity: k ~ 100.5
- Steven's law: more accurate
  - $\mathbf{B} = \mathbf{k} \cdot \mathbf{d} / \mathbf{I} \rightarrow \mathbf{B} = \mathbf{c} \cdot \mathbf{k}$

For Intensity: k ~ 0.4



#### **Gamma Correction**



- CRT has nonlinear response to input signal
  Intensity = a · Voltage<sup>gamma</sup> + b
- Requires correction for physical signals (I)
- Lucky coincidence: combined response is nearlinear
  - 0.4 · 2.5 ~= 1.0
  - Suggests: if colors are stored gamma-corrected
  - $\rightarrow$  best use of available precision
  - 9 bit (460 levels) good for ~100:1 contrast ratio
    Proof: Weber-Fechner law
  - Contrast ratio:

Ratio of white/black at certain adaptation level



#### **Intensity and Brightness**



Eye adaptation...
 Contrast 100:1
 (But: doesn't consider

- local adaptation!)
- → Need HDR displays!





#### Store Image Linear in Intensity





- Native arithmetic format
  - for shading, blending
- Requires conversion during display
- Banding below "best gray" (100)
- Textures need to be in linear space
- Practically unused today



#### Store Image Linear in Brightness





- Best use of available storage precision
- 256 levels (8 bit) are not bad (60 suffice)
- Requires conversion for each pixel operation
- Typical in video/image processing (MPEG)
- Images can be used w/o modification



# Experiment

#### What is half intensity of white?



()

# Experiment

#### What is half intensity of white?



 $\left( \right)$ 

255 186 128 = white/2





# Humans perceive intensity in a nonlinear way

We perceive brightness as linear

#### Physics happens in linear intensity





Uses Brightness coding (Gamma=2.2)

- Instead of 2.5, due to bright surroundings
- Every image, texture, browser color...
- Linear RGB-ramps are perceptually uniform
- But it's a hack for 3D graphics
- Not physically correct if used without gamma correction





- sRGB: color space with gamma=2.2
- DirectX9/10: better approach
  - converts sRGB-textures to linear on the fly!
  - all shading happens in linear space (correct!)
  - can write sRGB-values to framebuffer!
- DirectX10: adds correct blending!
- Beware of SGIs, MACs, ...
  - use different definitions of gamma
  - have default gamma in hardware-LUT
- Read Poynton's Gamma FAQ!



#### DirectX 9 sRGB and Gamma









#### DirectX 10/OpenGL 2.0 and Gamma

- Finally, correct gamma throughout the pipeline!
  - "de"-gamma before
    - Texture reads
    - Frame buffer blends (new!)
    - Multisampling (new!)
- OpenGL
  - EXT\_framebuffer\_sRGB
  - EXT\_texture\_sRGB



#### sRGB Example



#### Linear frame buffer (S to toggle) Using 0.45 (1 / 2.2) gamma from frame buffer to DAC (D to toggle)



No sRGB Conversion on Read

Using sRGB Conversion on Read





- Human adaptation ~100:1
  - Typical display: 100-500cd/m2, contrast 500:1
- BUT: eyes adapt locally → need HDR display
- Contrast ratio: 200.000:1
- Brightness: 3.000cd/m2
- → Black level: 0,015cd/m2
- Additional LED backlights





### Motion



#### Eye is sensitive to motion and change

 Rule: Avoid substantial frame-to-frame changes (e.g., popping for levels of detail, low frame rate)

### Animation

- Usually no flicker detection above 85 Hz
- Animations at >60 Hz interpreted as continuous
- Experiment on limits of visual system:
  Pilots can detect changes at 1/220<sup>th</sup> of a second



#### Motion – Movies



Movies: only 24 Hz, but:

- Use motion blur
- Afterimages due to
  - dark room, bright projector
  - whole frame refresh
- Higher contrast
- Pay attention to fast camera pans:
  - look blurry
  - double images





Eye/brain combination tracks motion

- Separation if colors are displayed sequentially (e.g., some projectors)
- Low framerate artifacts
  - Strobing/Stuttering
    Motion blur would help
  - Frame rate variations (very noticeable!)
  - Interlacing artifacts (combing)
  - Image doubling (repeated images)





#### Render and refresh rates differ

• e.g., render at 20 Hz, monitor at 60 Hz!



Refresh Rate = Update Rate

Refresh Rate = 3 \* Update Rate







# Ghosting







- Time from input to last pixel of display
- In a double-buffered display:



#### Latency



- Critical system issue
- Here: "total system latency"
- Sometimes different definitions
- 3 frames ~ 50ms at 60 Hz
- Can even be up to 4 frames
  - If graphics card buffers commands in queue
- Human latency thresholds
  - Hand-eye (fixed display) is ~100ms
  - Head-eye (HMD) is ~10ms





- Eye resolution not evenly distributed
  - Foveal resolution is ~20x peripheral
  - Flicker sensitivity higher in periphery (rods!)
- Static and dynamic resolutions differ
- One eye can compensate for the other
- Limit: about 0.5-1 arc minute
- 1600x1200 21"-screen at 60 cm:

1.4 arc minutes



