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Visibility




Overview

= Basics about visibility
m Basics about occlusion culling
= View-frustum culling / backface culling

m Occlusion culling
» From a point
m ODbject space / image space
= From a region
m Cells — portals / extended projections
m Point sampling / line space



What Can You Learn from this Lecture

= Terminology and problems of visibility
computation

m Principles of existing algorithms

m Goal: judge existing algorithms, design your
own visibility algorithms



Visibility Is Researched in ...

= Computer graphics

= Computational geometry
m Computer vision

= Robotics

m Architecture

m GIS



Applications in Computer Graphics

m Occlusion culling

= Shadows

= Global illumination

» Hidden-surface removal
= Viewpoint selection

= Image-based rendering



Basics of Visibility



Visibility from a Point
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m Terms: occluder, occludee,
shadow volume = umbra



Visibility from a Point
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m Complete point umbra
for occluders occ,, ..., occ, =
union of all individual umbrae



Occluder Fusion

Occluder fusion: exploit combined effect of
multiple occluders ot
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2 occluders

m No occluder fusion:
m Test against individual umbrae - visible

m Occluder fusion:
m Test against complete umbra - invisible
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Simple Algorithm for Point Visibility

= Umbra data structure (UDS) = empty

= For each occluder occ,

m Calculate umbra U,
= Add U;to UDS

m Test the scene against the UDS to see what
IS visible / occluded

= Examples for UDS: BSP-tree, z-buffer, ...
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Visibility from a Region
(Exampie in 2D)

(region) umbra

occluder
viewing region
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Visibility from a Region

= Goal: find complete (region) umbra!
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viewing region T

2 occluders

= Try: union of (region) umbrae...



Visibility from a Region

m Jest:
from-point visibility for some viewpoints...
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= Viewpoint 1. XXX invisible
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Visibility from a Region

m Jest:

from-point visibility for
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2 occluders

m Viewpoint 5: XXX invisible
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Visibility from a Region

2 occluders

m XXX Is always occluded - suggests:
complete region umbra is more than
union of individual region umbra

: ¥



Visibility from a Region

2 occluders

m Solution: complete region umbra-.
for occluders occ,, ..., occ, =
Intersection of complete point umbrae
for all viewpoints in region!

: ¥



Important Terms 1. Umbra / Penumbra

penumbra

P

occluder

. . penumbra
viewing region

m The area (volume) in full shadow Is the
umbra, the grey area the penumbra.

: ¥



Umbra / Penumbra

penumbra

)1 mn

OCCIUd ................

viewing region Nhaost fully

: : : . : visible
= Umbra is a simple in/out classification

= Penumbra additionally encodes which parts
of the viewing region are visible
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Important Terms 2:

Supporting / Separating Planes

supporting planes

/

separating planes

occluder
viewing region
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Supporting / Separating Planes

= Planes between two polyhedra defined by:

m Edge of one polyhedron (view cell/occluder)

= Vertex of other polyhedron (view cell/occluder)
m Supporting planes

m Example: bound umbra of one occluder

= Polyhedra on same side of plane
m Separating planes

m Example: bound penumbra of one occluder

m Polyhedra on opposite sides of plane

. ¥



Important Terms 3: Visual Events

Surfaces where visibility changes when a point
crosses it

» Interpretation 1: point is viewpoint
= Visual events bound regions of constant visibility

= Interpretation 2: point is “viewed point”
m Visual events are the shadow boundaries

occ,

occ,
view point
O

visual event
(interpretation 1)
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Visual Events

= Visual event types:

m Vertex-Edge (VE): supporting/separating
planes
» Edge-Edge-Edge (EEE): curved surfaces!

occ,

occ,
view point
O

visual event
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Visual Events / Shadow Boundaries

VIENNA




Shadow Boundaries

= Visual events, interpretation 2
= View cell always participates

height
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view cell



Shadow Boundaries

= Vertex/edge

26

view cell



Shadow Boundaries

= Vertex/edge

0CC,

view cell
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Shadow Boundaries

Edge/edge/edge

28

Edge.cd

VE plane:
Vertex: b
Edge: ef

EEE surface:

Edge: cd
Edge: ef
Edge: ab



Shadow Boundaries
curved!

. ¥



Occlusion Culling from a Region:
Theoretical Approaches

m Recall: complete region umbra = intersection
of complete point umbrae

m But: impossible to calculate!

m Approach: look at ways to merge penumbrae
= Complete region umbra =

union of individual region umbrae +
all regions where penumbrae merge to
umbra

» Problem: How to store Penumbra?

. 4
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Occlusion Culling from a Region |

= ldea l: ignore problem completely
» Umbra data structure (UDS) = empty

= for each occluder occ;
= Calculate umbra U,
= Add U, to UDS
m Test the scene against the UDS (union of U)
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Occlusion Culling from a Region |l

= ldea Il detect overlapping umbrae (case b)
m UDS = empty
= front-to back: for each occluder occ,

viewing region



Occlusion Culling from a Region Il

= |ldea ll: detect overlapping umbrae
m UDS = empty
= front-to back: for each occluder occ,
m Extend occluder into existing umbra

= Calculate (extended) umbra U,
= Add U;to UDS

viewing region
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Occlusion Culling from a Region Il

= |ldea ll: detect overlapping umbrae
m UDS = empty
m front-to back: for each occluder occ,
m Extend occluder into existing umbra

m Calculate (extended) umbra U
m Add U, to UDS

= Test the scene against UDS (which is nhow more

than rinionn nf aricinal 1. 1)
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viewing region
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Occlusion Culling from a Region I

= Idea lll: calculate everything (case c)

m Problem: complete region umbra bounded by
planes and reguli (ruled, quadric surfaces with
negative curvature) (recall visual events!)

m Possible solutions (see later):
m Sample from viewpoints and shrink occluders
m Solve problem in line space
m Extended projections

m Special case solutions (horizons,
cells/portals)



Visibility in Line Space (2D)
= Oriented 2D line maps to point in 2D oriented
projective space (line space)
m Conversely, 2D point maps to line
m Parameter choice:

my=kx+d
-yPIUc:ker coordinates (|n practice)
line | |*
/ o

; " X _ "k
primary space line space #
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Visibility in Line Space (2D)

viewing
region

b
m All lines between the view

region and an occluder map
to a polygon in line space

m “Occluder polygon’,
represents all possible sight

lines | :
38 é
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Visibility in Line Space (2D)

= Use a data structure that classifies line space
as In / out to store the umbra

= Front-to-back rendering unoccluded

S = view area

O, = occluder

Primary space Line space



Overview of Occlusion Culling
Algorithms



Visibility in Real-Time Rendering

= Interactively walk through a large model

m Large model = millions of polygons -
acceleration necessary (e.g. visibility)

41



Why is the Z-Buffer Not Enough?

= Does not eliminate depth-complexity
(overdraw) (but: early-z in newer cards)

= Does not eliminate application/vertex
processing of occluded objects

Application-specific
processing

\,

.
>

Scene

processing

J

Scene graph

= Visibility should also happen here

.
>

Polygon

Pixel

processing
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Visibility Culling

= View-frustum culling

m Occlusion culling
m Backface culling

S

view frustum

view
point

view-frustum culling

>0



Visibility Culling

= View-frustum culling
m Occlusion culling
m Backface culling

view frustum

view
point

occlusion culling



Visibility Culling

= View-frustum culling
m Occlusion culling
m Backface culling

backface culling

45

view frustum



Visibility culling

= Result

view frustum

view
point



View-Frustum Culling

= Eliminate polygons outside of the view
frustum

= Hierarchical data structure
= Bounding-volume hierarchy
m or any spatial data structure

. 4



View-frustum culling

= Hierarchy based on bounding volume

e

’ ¥



View-Frustum Culling

= Hierarchical view-frustum culling based on
bounding volume

intersect

intersect

N

intersect

vVie

outside intersect Inside inside inside
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View-Frustum Culling

= Hierarchical view-frustum culling using BSP
(Binary Space Partitioning) trees

.Aﬁ SE‘;



View-Frustum Culling

= Hierarchical view-frustum culling using
guadtree (octree)

. ¥



Backface Culling

m Screen space
m Cross product (only z is needed!

= Orientation of a
polygon is determined
by the vertex order

m Calculated by hardware

m Eye space
m Dot product °
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Occlusion Culling / Overview

m Occlusion Culling from a region

General Information
m Occlusion Culling from a point

Object Space
Image Space

Cells Portals
Extended Projection
Point Sampling

Line Space Visibility

53



Occlusion Culling

= Possible results:
= Visible
= Partially visible
m Occluded (invisible)

view frustum

view
point occluder
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Occlusion Culling

= Calculate PVS = potentially visible set

m Exact hidden surface removal is done by the
Z-buffer

m PVS can be
m Aggressive, PVS c EVS
» Conservative, PVS o EVS (preferred)
= Approximate, PVS ~ EVS

m EVS = exact solution (on a per-object basis)

. ¥



Occlusion Culling

= ODbjects (not individual triangles) are
organized in a hierarchical data structure
(scene data structure SDS)

= bounding box tree
octree, quadtree
kd tree

bsp tree

. ¥



Occlusion Culling (We need:)

= The scene organized in a hierarchical data
structure (= SDS).

m A (hierarchical) data structure for the umbra
(= UDS)

m A (selected) set of occluders (also stored In
the SDS)

m Sometimes all triangles in the scene can be
occluders

m If not, large polygons close to the viewpoint or
viewing region are selected

. ¥



Occlusion Culling (General Idea)

raverse the SDS top-down / front-to-back
m Test each node of the SDS against the UDS
for visibility
» If node invisible = skip node
m If node visible -

m Traverse down or

m mark objects in node visible and
Insert occluders into UDS (see eatrlier)

= Note: interleave creating UDS and checking
SDS
. ? 3



Occlusion Culling Acceleration

= |deas to accelerate occlusion culling /
overcome implementation problems

m 2.5D occlusion culling

m Occluder selection

» Lazy update of the UDS

m Approximate front-to-back sorting
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ldea: 2.5D Occlusion Culling

= Buildings are occluders, connected to the ground

= —> 2.5D visibility algorithms

m General 3D SDS, occluder is a function f(x,y) = z
- UDS only 2.5D #



ldea: Occluder Selection

= Costly to use all scene polygons as occluders
m Each occluder requires update to UDS
= ldea: Select only subset of polygons that
m Are close to the view point (view region)
» Have a large area
= Are facing the view point (view region)

occluder

~/

. ¥



ldea: Lazy Update of UDS

= Normally interleave:
m adding occluders to UDS
m testing objects of SDS against UDS
m But: UDS can be costly to update or access
m E.g., z-buffer
m ldea: Lazy update
= Insert many occluders into UDS at once

m Or: insert all occluders, then test (as iIn first
part of lecture)

. ¥



ldea: Approximate front-to-back sorting

= Exact front-to-back sorting is expensive

m Use approximate front-to-back sorting
» Usually based on hierarchy

m Need to be careful not to calculate incorrect
occlusion, especially for visibility from a
region

. 4



Occlusion Culling Algorithms: From Point

= Object space: Occlusion trees
= Image Space: Hierarchical z-Buffer
m Image Space, hardware: Occlusion Queries

. ¥



Occlusion Trees

= [Bittner98]
m SDS = kd tree
m UDS = BSP tree

m Works fine, all sorts of occluder fusion

= Adding thousands of occluders to the UDS Is
slow

: ¥



Hierarchical z-Buffer

= [Greene93]
m SDS = octree
» UDS = z-pyramid
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Z-Pyramid

m Lowest level: full-resolution Z-buffer

m Higher levels: each pixel represents the
maximum depth of the four pixels
“underneath” it
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Hardware Implementation

= Only 2-3 levels on current hardware
= Only per-fragment culling

= Works automatically

m Saves rasterization time
m Per-object culling: occlusion gqueries

m Ask whether an object would have been
rendered

= Uses hardware pyramid
= Problem: latency of query

68



Hardware Occlusion Queries

= Extension name: ARB_occlusion_query

m Returns no. of pixels that pass
m For aggressive occlusion culling

= Provides an interface to issue multiple queries
at once before asking for the result of any one

» Allows hiding latency
m Do other work in parallel

m Coherent Hierarchical Culling [Bittner0O4]

m Exploit temporal coherence to eliminate
latency and reduce gqueries

. ¥



Occlusion Culling Algorithms: From Region

Special case: Cells and portals
Image space: Extended Projections
Point Sampling

Line Space

. ¥



Visibility Preprocessing

= Subdivide view space Into view cells
m Calculate PVS for each view cell
m Store all PVS on disk

view cell




Cells and Portals

= Architectural walkthroughs

m Structure scene Into
m Cells (mainly rooms)
» Portals (mainly doors)




Cells and Portals

Build adjacency graph

Cells = nodes, portals = edges

Portal sequences

m Preprocess algorithm:
m Test sightlines through an oriented portal

seguence

m Use depth search in adjacency graph

On

(e.g. linear-programming)

Ine algorithm:

m Project portals to screen space

ntersect with previous projected
portals

invisi




Extended Projections

= [Durand2000]

= SDS = anything

m UDS = z-pyramid / z-buffer
= Image space algorithm
= Modifies projection of

m Occluder (smaller)

= Occludee (larger)
= Depending on viewing region

: ¥



Point Sampling

= [Wonka2000]

= Make point sampling possible for conservative
occlusion culling for a region

. ¥



ldea: Shrink Occluders

---

ora for ée-
nhborhood
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Algorithm Overview

m Shrink all occluders

m For each view cell

m For each sample
point calculate PVS

m Calculate union of all
PVS

Sampl
point

1




Line Space

= [Bittner02]
m SDS = kd tree
m UDS = Line Space BSP tree
= 3D primary space - 5D line space

78
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