Real-Time Rendering
(Echtzeitgraphik)

Dr. Michael Wimmer
wimmer@cg.tuwien.ac.at

Visibility

Overview

= Basics about visibility
m Basics about occlusion culling
= View-frustum culling / backface culling

m Occlusion culling
» From a point
m ODbject space / image space
= From a region
m Cells — portals / extended projections
m Point sampling / line space

What Can You Learn from this Lecture

= Terminology and problems of visibility
computation

m Principles of existing algorithms

m Goal: judge existing algorithms, design your
own visibility algorithms

Visibility Is Researched in ...

= Computer graphics

= Computational geometry
m Computer vision

= Robotics

m Architecture

m GIS

Applications in Computer Graphics

m Occlusion culling

= Shadows

= Global illumination

» Hidden-surface removal
= Viewpoint selection

= Image-based rendering

Basics of Visibility

Visibility from a Point

viewpoint R R

occluder ' B e

....................
lllllllllllllllll
llllllll

occludee

m Terms: occluder, occludee,
shadow volume = umbra

Visibility from a Point

Y
lllllll
llllllllll
llllllllllllll
lllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllll

e e e e
..............................
......................................
...

viewpoint - e Fg

e

''''''''''''''''

2 occluders

N
e L
.............................

llllllllllllllllllllllll
llllllllllllll
llllllllllll
llllllllll
lllllllll

m Complete point umbra
for occluders occ,, ..., occ, =
union of all individual umbrae

Occluder Fusion

Occluder fusion: exploit combined effect of
multiple occluders ot

viewpoint ! """ 5

llllllllllll
......................
llllllllll
lllllllll
llllllll
llllllllll

2 occluders

m No occluder fusion:
m Test against individual umbrae - visible

m Occluder fusion:
m Test against complete umbra - invisible

o ¥

Simple Algorithm for Point Visibility

= Umbra data structure (UDS) = empty

= For each occluder occ,

m Calculate umbra U,
= Add U;to UDS

m Test the scene against the UDS to see what
IS visible / occluded

= Examples for UDS: BSP-tree, z-buffer, ...

. ¥

Visibility from a Region
(Exampie in 2D)

(region) umbra

occluder
viewing region

: ¥

Visibility from a Region

= Goal: find complete (region) umbra!

>%///ﬁ’ B

viewing region T

2 occluders

= Try: union of (region) umbrae...

Visibility from a Region

m Jest:
from-point visibility for some viewpoints...

R R R LR R

;ﬁ complete point umbra 1 |

T X0

2 occluders i,

= Viewpoint 1. XXX invisible

14

Visibility from a Region

m Jest:

from-point visibility for
sqgme viewpoints. .. Jﬁﬁ%///ﬁfﬁ

complete pomt umbra 5 ﬁ
o ff’f:f';"-'ﬁ'""' .
fafr s "'."{..-".-"::;"

2 occluders

m Viewpoint 5: XXX invisible

: ¥

Visibility from a Region

2 occluders

m XXX Is always occluded - suggests:
complete region umbra is more than
union of individual region umbra

: ¥

Visibility from a Region

2 occluders

m Solution: complete region umbra-.
for occluders occ,, ..., occ, =
Intersection of complete point umbrae
for all viewpoints in region!

: ¥

Important Terms 1. Umbra / Penumbra

penumbra

P

occluder

. . penumbra
viewing region

m The area (volume) in full shadow Is the
umbra, the grey area the penumbra.

: ¥

Umbra / Penumbra

penumbra

)1 mn

OCCIUd

viewing region Nhaost fully

: : : . : visible
= Umbra is a simple in/out classification

= Penumbra additionally encodes which parts
of the viewing region are visible

: ¥

Important Terms 2:

Supporting / Separating Planes

supporting planes

/

separating planes

occluder
viewing region

. ¥

Supporting / Separating Planes

= Planes between two polyhedra defined by:

m Edge of one polyhedron (view cell/occluder)

= Vertex of other polyhedron (view cell/occluder)
m Supporting planes

m Example: bound umbra of one occluder

= Polyhedra on same side of plane
m Separating planes

m Example: bound penumbra of one occluder

m Polyhedra on opposite sides of plane

. ¥

Important Terms 3: Visual Events

Surfaces where visibility changes when a point
crosses it

» Interpretation 1: point is viewpoint
= Visual events bound regions of constant visibility

= Interpretation 2: point is “viewed point”
m Visual events are the shadow boundaries

occ,

occ,
view point
O

visual event
(interpretation 1)

. ¥

Visual Events

= Visual event types:

m Vertex-Edge (VE): supporting/separating
planes
» Edge-Edge-Edge (EEE): curved surfaces!

occ,

occ,
view point
O

visual event

g ¥

Visual Events / Shadow Boundaries

VIENNA

Shadow Boundaries

= Visual events, interpretation 2
= View cell always participates

height

25

view cell

Shadow Boundaries

= Vertex/edge

26

view cell

Shadow Boundaries

= Vertex/edge

0CC,

view cell

27

Shadow Boundaries

Edge/edge/edge

28

Edge.cd

VE plane:
Vertex: b
Edge: ef

EEE surface:

Edge: cd
Edge: ef
Edge: ab

Shadow Boundaries
curved!

. ¥

Occlusion Culling from a Region:
Theoretical Approaches

m Recall: complete region umbra = intersection
of complete point umbrae

m But: impossible to calculate!

m Approach: look at ways to merge penumbrae
= Complete region umbra =

union of individual region umbrae +
all regions where penumbrae merge to
umbra

» Problem: How to store Penumbra?

. 4

o View

T

‘V\ CE“ '\ i
Connected Occluder l Overlapping
Umbra

3 ways how
penumbrae c)

merge to umbra View —
cell |

Overlapping
Penumbra

A

, !

Occlusion Culling from a Region |

= ldea l: ignore problem completely
» Umbra data structure (UDS) = empty

= for each occluder occ;
= Calculate umbra U,
= Add U, to UDS
m Test the scene against the UDS (union of U)

lll
llllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllll

lllllllllllllllllllllllllll
llllllllllllllllllllllll

llllllllllllllllll
llllllllllllll
e

viewing region e
occluders

32

Occlusion Culling from a Region |l

= ldea Il detect overlapping umbrae (case b)
m UDS = empty
= front-to back: for each occluder occ,

viewing region

Occlusion Culling from a Region Il

= |ldea ll: detect overlapping umbrae
m UDS = empty
= front-to back: for each occluder occ,
m Extend occluder into existing umbra

= Calculate (extended) umbra U,
= Add U;to UDS

viewing region

34

Occlusion Culling from a Region Il

= |ldea ll: detect overlapping umbrae
m UDS = empty
m front-to back: for each occluder occ,
m Extend occluder into existing umbra

m Calculate (extended) umbra U
m Add U, to UDS

= Test the scene against UDS (which is nhow more

than rinionn nf aricinal 1. 1)
[@ AL T UAI TINJI1T Ul WVl Ivlllul \JI -/

N
L e
llllll

viewing region

35

Occlusion Culling from a Region I

= Idea lll: calculate everything (case c)

m Problem: complete region umbra bounded by
planes and reguli (ruled, quadric surfaces with
negative curvature) (recall visual events!)

m Possible solutions (see later):
m Sample from viewpoints and shrink occluders
m Solve problem in line space
m Extended projections

m Special case solutions (horizons,
cells/portals)

Visibility in Line Space (2D)
= Oriented 2D line maps to point in 2D oriented
projective space (line space)
m Conversely, 2D point maps to line
m Parameter choice:

my=kx+d
-yPIUc:ker coordinates (|n practice)
line | |*
/ o

; " X _ "k
primary space line space #

37

Visibility in Line Space (2D)

viewing
region

b
m All lines between the view

region and an occluder map
to a polygon in line space

m “Occluder polygon’,
represents all possible sight

lines | :
38 é

bd*

Visibility in Line Space (2D)

= Use a data structure that classifies line space
as In / out to store the umbra

= Front-to-back rendering unoccluded

S = view area

O, = occluder

Primary space Line space

Overview of Occlusion Culling
Algorithms

Visibility in Real-Time Rendering

= Interactively walk through a large model

m Large model = millions of polygons -
acceleration necessary (e.g. visibility)

41

Why is the Z-Buffer Not Enough?

= Does not eliminate depth-complexity
(overdraw) (but: early-z in newer cards)

= Does not eliminate application/vertex
processing of occluded objects

Application-specific
processing

\,

.
>

Scene

processing

J

Scene graph

= Visibility should also happen here

.
>

Polygon

Pixel

processing

42

Y

processing
/|
Frame
buffer
/

\

Texture
memory

Visibility Culling

= View-frustum culling

m Occlusion culling
m Backface culling

S

view frustum

view
point

view-frustum culling

>0

Visibility Culling

= View-frustum culling
m Occlusion culling
m Backface culling

view frustum

view
point

occlusion culling

Visibility Culling

= View-frustum culling
m Occlusion culling
m Backface culling

backface culling

45

view frustum

Visibility culling

= Result

view frustum

view
point

View-Frustum Culling

= Eliminate polygons outside of the view
frustum

= Hierarchical data structure
= Bounding-volume hierarchy
m or any spatial data structure

. 4

View-frustum culling

= Hierarchy based on bounding volume

e

’ ¥

View-Frustum Culling

= Hierarchical view-frustum culling based on
bounding volume

intersect

intersect

N

intersect

vVie

outside intersect Inside inside inside

49

View-Frustum Culling

= Hierarchical view-frustum culling using BSP
(Binary Space Partitioning) trees

.Aﬁ SE‘;

View-Frustum Culling

= Hierarchical view-frustum culling using
guadtree (octree)

. ¥

Backface Culling

m Screen space
m Cross product (only z is needed!

= Orientation of a
polygon is determined
by the vertex order

m Calculated by hardware

m Eye space
m Dot product °

52

Occlusion Culling / Overview

m Occlusion Culling from a region

General Information
m Occlusion Culling from a point

Object Space
Image Space

Cells Portals
Extended Projection
Point Sampling

Line Space Visibility

53

Occlusion Culling

= Possible results:
= Visible
= Partially visible
m Occluded (invisible)

view frustum

view
point occluder

54

Occlusion Culling

= Calculate PVS = potentially visible set

m Exact hidden surface removal is done by the
Z-buffer

m PVS can be
m Aggressive, PVS c EVS
» Conservative, PVS o EVS (preferred)
= Approximate, PVS ~ EVS

m EVS = exact solution (on a per-object basis)

. ¥

Occlusion Culling

= ODbjects (not individual triangles) are
organized in a hierarchical data structure
(scene data structure SDS)

= bounding box tree
octree, quadtree
kd tree

bsp tree

. ¥

Occlusion Culling (We need:)

= The scene organized in a hierarchical data
structure (= SDS).

m A (hierarchical) data structure for the umbra
(= UDS)

m A (selected) set of occluders (also stored In
the SDS)

m Sometimes all triangles in the scene can be
occluders

m If not, large polygons close to the viewpoint or
viewing region are selected

. ¥

Occlusion Culling (General Idea)

raverse the SDS top-down / front-to-back
m Test each node of the SDS against the UDS
for visibility
» If node invisible = skip node
m If node visible -

m Traverse down or

m mark objects in node visible and
Insert occluders into UDS (see eatrlier)

= Note: interleave creating UDS and checking
SDS
. ? 3

Occlusion Culling Acceleration

= |deas to accelerate occlusion culling /
overcome implementation problems

m 2.5D occlusion culling

m Occluder selection

» Lazy update of the UDS

m Approximate front-to-back sorting

59

ldea: 2.5D Occlusion Culling

= Buildings are occluders, connected to the ground

= —> 2.5D visibility algorithms

m General 3D SDS, occluder is a function f(x,y) = z
- UDS only 2.5D #

ldea: Occluder Selection

= Costly to use all scene polygons as occluders
m Each occluder requires update to UDS
= ldea: Select only subset of polygons that
m Are close to the view point (view region)
» Have a large area
= Are facing the view point (view region)

occluder

~/

. ¥

ldea: Lazy Update of UDS

= Normally interleave:
m adding occluders to UDS
m testing objects of SDS against UDS
m But: UDS can be costly to update or access
m E.g., z-buffer
m ldea: Lazy update
= Insert many occluders into UDS at once

m Or: insert all occluders, then test (as iIn first
part of lecture)

. ¥

ldea: Approximate front-to-back sorting

= Exact front-to-back sorting is expensive

m Use approximate front-to-back sorting
» Usually based on hierarchy

m Need to be careful not to calculate incorrect
occlusion, especially for visibility from a
region

. 4

Occlusion Culling Algorithms: From Point

= Object space: Occlusion trees
= Image Space: Hierarchical z-Buffer
m Image Space, hardware: Occlusion Queries

. ¥

Occlusion Trees

= [Bittner98]
m SDS = kd tree
m UDS = BSP tree

m Works fine, all sorts of occluder fusion

= Adding thousands of occluders to the UDS Is
slow

: ¥

Hierarchical z-Buffer

= [Greene93]
m SDS = octree
» UDS = z-pyramid

66

Z-Pyramid

m Lowest level: full-resolution Z-buffer

m Higher levels: each pixel represents the
maximum depth of the four pixels
“underneath” it

67

Hardware Implementation

= Only 2-3 levels on current hardware
= Only per-fragment culling

= Works automatically

m Saves rasterization time
m Per-object culling: occlusion gqueries

m Ask whether an object would have been
rendered

= Uses hardware pyramid
= Problem: latency of query

68

Hardware Occlusion Queries

= Extension name: ARB_occlusion_query

m Returns no. of pixels that pass
m For aggressive occlusion culling

= Provides an interface to issue multiple queries
at once before asking for the result of any one

» Allows hiding latency
m Do other work in parallel

m Coherent Hierarchical Culling [Bittner0O4]

m Exploit temporal coherence to eliminate
latency and reduce gqueries

. ¥

Occlusion Culling Algorithms: From Region

Special case: Cells and portals
Image space: Extended Projections
Point Sampling

Line Space

. ¥

Visibility Preprocessing

= Subdivide view space Into view cells
m Calculate PVS for each view cell
m Store all PVS on disk

view cell

Cells and Portals

= Architectural walkthroughs

m Structure scene Into
m Cells (mainly rooms)
» Portals (mainly doors)

Cells and Portals

Build adjacency graph

Cells = nodes, portals = edges

Portal sequences

m Preprocess algorithm:
m Test sightlines through an oriented portal

seguence

m Use depth search in adjacency graph

On

(e.g. linear-programming)

Ine algorithm:

m Project portals to screen space

ntersect with previous projected
portals

invisi

Extended Projections

= [Durand2000]

= SDS = anything

m UDS = z-pyramid / z-buffer
= Image space algorithm
= Modifies projection of

m Occluder (smaller)

= Occludee (larger)
= Depending on viewing region

: ¥

Point Sampling

= [Wonka2000]

= Make point sampling possible for conservative
occlusion culling for a region

. ¥

ldea: Shrink Occluders

ora for ée-
nhborhood

. 4

Algorithm Overview

m Shrink all occluders

m For each view cell

m For each sample
point calculate PVS

m Calculate union of all
PVS

Sampl
point

1

Line Space

= [Bittner02]
m SDS = kd tree
m UDS = Line Space BSP tree
= 3D primary space - 5D line space

78

Literature

D. Cohen-Or, Chrysanthou, Silva, Durand. A Survey of
Visibility for Walkthrough Applications. IEEE TVCG 2002.

J. Bittner, Havran, Slavik. Hierarchical visibility culling with
occlusion trees. CGI'98.

N. Greene, Kass, Miller. Hierarchical z-buffer visibility.
Siggraph 1993.

F. Durand, Drettakis, Thollot, Puech. Conservative Visibility
Preprocessing using Extended Projections. Siggraph 2000.

Peter Wonka, Wimmer, Schmalstieg. Visibility Preprocessing
with Occluder Fusion for Urban Walkthroughs. Rendering
Workshop 2000.

J. Bittner, Wonka, Wimmer. Visibility Preprocessing for Urban
Scenes using Line Space Subdivision. Pacific Graphics (PG)

2001. :
. 4

