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Texturing




Overview

OpenGL lighting refresher
Texture Spaces
Texture Aliasing and Filtering
Multitexturing

» Lightmapping
Texture Coordinate Generation
= Projective Texturing
= Multipass Rendering
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But Before We Start: Shading

= Flat shading
= compute light interaction per polygon
m the whole polygon has the same color
» Gouraud shading
m compute light interaction per vertex
= Interpolate the colors
= Phong shading
= Interpolate normals per pixel
= Remember: difference between
= Phong Light Model
= Phong Shading

Vienna University of Technology 4



But Before We Start. OpenGL Lighting

= Phong light model at each vertex (glLight, ...)
= Local model only (no shadows, radiosity, ...)
= ambient + diffuse + specular (glMaterial!)

.+

m Fixed function: Gouraud shading
= Note: need to interpolate specular separately!

= Phong shading: calculate Phong model In
fragment shader
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Why Texturing?

= ldea: enhance visual appearance of plain
surfaces by applylng flne structured details
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OpenGL Texture Mapping

m Basis for most real-time rendering effects
= Look and feel of a surface

m Definition:

m A regularly sampled function that is mapped
onto every fragment of a surface

m Traditionally an image, but...

m Can hold arbitrary information
m Textures become general data structures
= WiIll be interpreted by fragment programs
= Can be rendered into - important!
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Types of Textures

= Spatial Layout
m 1D, 2D, 3D
m Cube Maps
m Formats (too many), e.g. OpenGL

» LUMINANCE16 ALPHA16: 32bit =2 x 16 bit
oump map

m RGBA4: 16bit = 4 x 4 colors

= RGBA FLOAT32: 128 bit = 4 x 32 bit float

m compressed formats, high dynamic range
formats, ...
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Texturing: General Approach

Texels

Texture space (u,v) Object space (Xo,Yo.Zo) Image Space (x,,y))

(Projection etc.)
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Texture Spaces

Modeling

Vienna University of Technology

Object space
(X,y,Z,w)

Parameter Space

Texture Space
CAY)
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Rendering

Texture
projection

Texture
function



Texture Projectors

Where do texture coordinates come from?

m Online: texture matrix/texcoord generation

m Offline: manually (or by modeling prog)
spherical cylindrical planar  natural
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Texture Projectors

Where do texture coordinates come from?
m Offline: manual UV coordinates by DCC program
= Note: a modeling Problem!
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Texture Functions

= How to extend texture beyond the border?
m Border and repeat/clamp modes
= Arbitrary (s,t,...) =2 [0,1] = [0,255]x[0,255]

reoeat ~mirror/repeat  (
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Texture Aliasing

Texture space

Image space ﬁ
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Texture Anti-Aliasing

= A good pixel value is the weighted mean of the pixel
area projected into texture space

Texture space U Image space ﬁ
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Texture Anti-Aliasing: MIP Mapping

= MIP Mapping (“Multum In Parvo”)

m Texture size iIs reduced by factors of 2
(downsampling = "much info on a small area")

= Simple (4 pixel average) and memory efficient
m Last image is only ONE texel
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Texture Anti-Aliasing: MIP Mapping

= MIP Mapping Algorithm

s D :=ld(max(d,,d,)) Mlg Map level

= T, := value from texture D,= trunc (D)
m Use bilinear interpolation

Bilinear interpolation \ Trilinear interpolation




Texture Anti-Aliasing: MIP Mapping

= Trilinear interpolation:
= T, :=value from texture D, = D,+1 (bilin.interpolation)
= Pixel value := (D,—D)-T, + (D-D,)-T,
= Linear interpolation between successive MIP Maps
= Avoids "Mip banding" (but doubles texture lookups)
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Texture Anti-Aliasing: Mip Mapping

m Other example for bilinear vs. trilinear filtering
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Texture Anti-Aliasing

» Bilinear reconstruction for texture magnification (D<0)
("upsampling")

» Weight adjacent texels by distance to pixel position

T(u+du,v+dv)

= du-dv-T(u+1,v+1)
+ du-(1-dv)-T(u+1,v)
+ (1-du)-dv-T(u,v+1)
+ (1-du)-(1-dv)-T(u,v)

u o
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Anti-Aliasing (Bilinear Filtering Example)

Al Original image

Nearest neighbor Bilinear filtering P
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Anti-Aliasing: Anisotropic Filtering

= Anisotropic Filtering
= View dependent filter kernel

= Implementation: summed area table, "RIP Mapping",
"footprint assembly" , “sampling”

"‘ﬁ

(8

Texture space
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Anti-Aliasing: Anisotropic Filtering

= Example

Isotropic Filter Anisotropic Filter
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Texture Anti-aliasing

m Everything is done in hardware, nothing much
to do!

= gluBuil ld2DMipmaps()generates MIPmaps

m Set parameters in gl TexParameter()

= GL_LINEAR_MIPMAP_NEAREST
m GL_TEXTURE_MAG_FILTER

m— — - - - - mem w

= Anisotropic filtering is an extension:
m GL_EXT texture filter_anisotropic

= Number of samples can be varied (4x,8%,16Xx)
m Vendor specific support and extensions
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Multitexturing

= Apply multiple textures in one pass

= Integral part of programmable shading
m e.g. diffuse texture map + gloss map
m e.g. diffuse texture map + light map

m Performance issues
= How many textures are free?
= How many are available
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Multitexture — How?

= Simple(!) texture environment example:

glActiveTexture(GL_TEXTURE1);
glTexEnvi (GL_TEXTURE_ENV, ..)
GL_TEXTURE_ENV_MODE, GL_COMBINE) ;

= Programmable shading makes this easier!

Vienna University of Technology 27 ﬁ



Example: Light Mapping

= Used in virtually every commercial game

m Precalculate diffuse lighting on static objects
= Only low resolution necessary
m Diffuse lighting is view independent!

m Advantages:

= No runtime lighting necessary
= VERY fast!

m Can take global effects (shadows, color
bleeds) into account
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Light Mapping

Original LM texels Bilinear Filtering
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Light Mapping
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Example: Light Mapping

m Precomputation based on non-realtime
methods

» Radiosity

= Raytracing
= Monte Carlo Integration
» Pathtracing
= Photonmapping
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Light Mapping

enna University of Technology
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Light Mapping
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Ambient Occlusion

m Special case of light mapping

m Cos-weighted visibility to environment
modulates intensity:
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m Darker where more occluded
= Option: “per object” lightmap
m Allows to move object
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Ambient Occlusion

Model/Texture: Rendermonkey
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Light Mapping Issues

= Map generation:

m Use single map for group of coplanar polys
= Lightmap UV coordinates need to be in (0..1)x(0..1)

= Map application:
» Premultiply textures by light maps
= Why is this not appealing?
» Multipass with framebuffer blend
» Problems with specular

» Multitexture
m Fast, flexible
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Light Mapping Issues
» Why premultiplication is bad...

Full Size Texture
(with Lightmap)

Tiled Surface Texture
plus Lightmap

- use tileable surface textures and low
resolution lightmaps
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Light Mapping/AO Toolset

m DCC programs (Blender, Maya...)
m Game Engines (lrrlicht)
m Light Map Maker (free)

» Ambient Occlusion:
» XNormal
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Texture Coordinates

m Specified manually (gIMultiTexCoord())
m Using classical OpenGL texture coordinate
generation

m Linear: from object or eye space vertex
coords

m Special texturing modes (env-maps)

m Can be further modified with texture matrix
= E.g., to add texture animation

m Can use 3rd or 4th texture coordinate for
projective texturing!

m Shader allows complex texture lookups!
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Texture Coordinate Generation

m Specify a “plane” (i.e., a 4D-vector) for each
coordinate (s,t,r,q)

m Example:s=p; Xx+p,y+p3z+p,w

GLFfloat Splane[4] = { pl, p2, p3, pd }:
gl TexGenfv(GL_S, GL_EYE_PLANE, Splane);
glEnable(GL_TEXTURE GEN _S);

m Think of this as a matrix T with plane parameters
as row vectors
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Texture Coordinate Generation

m Object-linear: S

m Eye-linear: L4 W
T,=T-M1
(M...Modelview matrix at
time of specification!) S
m Effect: uses coordinate space
at time of specification! =T
= Eye: M=identity r
= World: M=view-matrix q.

object

r~—
S N < X

- T eye
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Texture Animation

m Classic OpenGL

m Can specify an arbitrary 4x4 Matrix,
each frame!

|
m There is also a texture matrix stack!

m Shaders allow arbitrary dynamic calculations
with uv-coordinates

m Many effects possible:
= Flowing water, conveyor belts, distortions etc.
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Projective Texturing



Projective Texture Mapping

m Want to simulate a beamer
m ... or aflashlight, or a slide projector
m Precursor to shadows

= Interesting mathematics:
2 perspective
projections involved!

m Easy to program!

Vienna University of Technology 44 ﬁ



Projective Texture Mapping
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Projective Texture Mapping: Vertex Stage

= Map vertices to light frustum
m Option 1: from object space
m Option 2: from eye space

= Projection

(perspective transform)

*
Viewpoint
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Camera

|_| Object space — homogeneous

[

-

MODEL MATRIX

World space — homogeneous

|

~,

CAMERA VIEW
MATRIX

"y

Eve space -- homogeneous

|

CAMERA PROJECTION
MATRIX

Clip space — homogeneous

Perspective divide

NDC space -- real

Viewport and depth range

Window space -- real

V
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Projector

|_| Object space — homogeneous

-

MODEL MATRIX

World space — homogeneous

-,

PROJECTOR VIEW
MATRIX
Projector space -- homogeneous
PROJECTOR
PROJECTION MATRIX

Projector clip space — homogeneous

[
|
|
|

[0.1] range mapping ]

Texture space — homogeneous




Projective Texture Mapping

m OpenGL does not store Modeling Matrix
= No notion of world space!

Modelview
- - = _ N - -
X X
€ Camera 0
Ye — view Modeling Yo
Z, (look at) matrix Z,
We matrix Wo
Camera Space Object Space
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Projective Texture Mapping

m Version 1: transforming object space

coordinates

» Disadvantage: need to provide model matrix
for each object in shader!

m Classic OpenGL: even more difficult!
S 1/2 1/2
Light Light
U] — 172 1/2 view Modeling
B (projection) (look at) :
; 1/2 1/2 matrix matrix matrix
] B 1] L 1L 1L |

Map [-1..1]7’
to [0..1] T
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Projective Texture Mapping

m Version 2: transforming eye space

coordinates

» Advantage: matrix works for all objects!

S 1/2 1/2
Light Light
t | _ 12 12 view
[ - (projection) (look at)
1/2 1/2 matrix matrix
q
o - - 1 — - D
\ /
T
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Classic OpenGL TexGen Transform

Modelview
_ - ~ o N —
X X
e Eye 0]
Ye — view Modeling Yo
Zo (look at) matrix Z,
W, matrix W,
S 1/2 1/2
Light Light
{ — 1/2  1/2 frustum view
r| (projection) | |(look at)
1/21/2 matrix matrix
q
- i 1] L JL _
\ /

Automatically
applied by TexGen
(set Modeling
matrix to eyeview)

/

Inverse
eye
view
(look at)
matrix

Supply this combined transform to glTexGen
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Projective Texture Mapping: Rasterization

= Problem: texture coordinate interpolation
m Texture coordinates are homogeneous!

m Look at perspective correct texturing first!
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Perspective Texture Mapping

= Problem: linear interpolation in rasterization?

ax, +bx, X, X,
objectspace za—+b—= screenspace
interpolation AW, + bw, W, W, interpolation

S

V4
-

W

N
N\
NN

N

N

A\ 4
N\\X_& 5’
N\

&
%
A\
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Perspective Texture Mapping

= Solution: interpolate (s/w, t/w, 1/w)
m (s/w)/ (1/w) = s etc. at every fragment

OBJECT-AFFINE SPACES SCREEN-AFFINE SPACES
each fragment

texture space  _~ div by 1/w homogeneous texture space

//— (ua V) T : (Ilfw, V.Iw, IFW]

object space

world space

\ homogeneous screen space . screen space
(XW, yw, w) — (X, ¥)

div by w
eachivertex




Projective Texturing

» What about homogeneous texture coords?

= Need to do perspective divide also for
projector!

m (s, t,q) =2 (s/qg, t/g) for every fragment
= How does OpenGL do that?
» Needs to be perspective correct as well!
= Trick: interpolate (s/w, t/w, r/w, g/w)
m (s/w)/ (g/w) = s/q etc. at every fragment

» Remember: s,t,r,q are equivalent to x,y,z,w In
projector space! = r/g = projector depth!
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Homogeneous Perspective Correct Interpolation

[x,v,z,1,r,9,b,a]

texcoord generation =2 [x,vy,z,1, r,0,b,a, s,t,r,q]
Modelviewprojection - [x',y',z",w,1, r,g,b,a, s,i,r,q]
Project (/w) =

X'Iw, y'iw, Z’'lw, 1/w, r,g,b,a, s/w, t/w, r/w, g/w Jver
m Rasterize and interpolate -

X'Iw, y'iw, Z’lw, 1/w, r,g,b,a, s/w, t/w, riw, g/w ]rae
» Homogeneous: - texture project (/ q/w) =2
xX'w,y'lw,z’/w,1/w, r,g,b,a, s/q,t/q,r/q,1]

= Or non-homogeneous: = standard project (/ 1/w) =
DCIw, v iw, 72w, 1w, r,g,b,a, s,trgl (for normals)
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Projective Texture Mapping

= Problem
m reverse projectio
= Solutions

m Cull objects
behind projector

m Use clip planes to eliminate objects behind projector

m Fold the back-projection factor into a 3D attenuation
texture

= Use to fragment program to check g <0
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Projective Texture Mapping

= Problems
m Resolution problemsjl

= Projection behind
shadow casters

- Shadow Mapping!
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Projective Texture Mapping Example

m Example shown in CG Shading Language
m CG is proprietary to NVIDIA
m C-like synthax

m HLSL (DirectX shading language) nearly
the same synthax

» Shading languages have specialized calls
for projective texturing:

m CG/HLSL: tex2Dproj
m GLSL: texture2DProj

= They include perspective division
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CG Vertex Program

Input: Ffloat4 position,
float3 normal

Output: fFloat4 oPosition,
float4 texCoordProj,
float4 diffuselLighting

Uniform:float Kd,
floatdx4 modelViewProj,
float3 lightPosition,
floatd4x4 textureMatrix
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CG Vertex Program

oPosition =
mul (modelViewProj, position);

texCoordProj =
mul (textureMatrix, position);

float3 N = normalize(normal);
float3 L = normalize(lightPosition
— position.xyz);
diffuseLighting =
Kd * max(dot(N, L),0);
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CG Fragment Program

Input: Tloat4 texCoordProj,
float4 diffuselLighting

Output: float4 color

Uniform:sampler2D projectiveMap

float4 textureColor =
tex2Dproj(projectiveMap,
texCoordProj);

color = textureColor *
diffuseLighting;
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CG vs. Classic OpenGL

m Classic OpenGL:
m Just supply correct matrix to glTexGen

> Projective texturing Is easy to program and
very effective method.

> Combinable with shadows

v
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Projective Shadow in Doom 3 v

—
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Texture Compression

m S3TC texture compression (DXTn)
= Represent 4x4 texel block by two 16bit colors

(5 red, 6 green, 5 blue)

m Store 2 hits per texel

m Uncompress

m Create 2 additional
Colors between cl
and c2

m use 2 bits to index
which color

Vienna University of Technology

Original Texture

Linearly Interpolated -

m 4:1 or 6:1 compression

Color 00 A

- Color 10
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Multipass Rendering



Multipass Rendering

= Recall 80 million triangle scene

m Games are NOT using a = 0.5
m at least not yet

m Assume a =32, | =1024x768, d=4
m Typical for last generation games
m F=1*d = 3,1 MF/frame,
m T=F/a=98304 T/frame
m 60 Hz - ~189 MF/s, ~5,6 MT/s
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Do More!

m Hardware underused with standard OpenGL
lighting and texturing

What can we do with this power?

» Render scene more often:
multipass rendering

= Render more complex pixels:
multitexturing

m 2 textures are usually for free

m Render more complex pixels and triangles:
programmable shading
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Note

m Conventional OpenGL allows for many effects
using multipass

m Still In use for mobile devices and last
gen consoles

» Modern form: render to texture
= Much more flexible but same principle

m Programmable shading makes things easier
m Specialized calls in shading languages
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Multipass Rendering: Why?

m OpenGL lighting model only

= local

m limited in complexity
m Many effects possible with multiple passes:
m Dynamic environment maps
= Dynamic shadow maps
= Reflections/mirrors
L
[

Dynamic Impostors
(Light maps)
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Multipass Rendering: How?

m Render to auxiliary buffers, use result as
texture

» E.g.: environment maps, shadow maps
m Requires pbuffer/fbo-support

» Redraw scene using fragment operations
m E.qg.: reflections, mirrors
m Uses depth, stencil, alpha, ... tests

= “Multitexture emulation mode”: redraw
m Uses framebuffer blending

= (light mapping)
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Multipass Rendering: How?

(assume redraw scene...)

m First pass

m Establishes z-buffer (and maybe stencil)
gIDepthFunc(GL LEQUAL);

= Usually diffuse lighting

m Second pass
m Z-Testing only
gIDepthFunc(GL_LEQUAL);
m Render special effect using (examples):

= Blending
Vienna Universi yorgec!1§l-cgyenc i I FunCQG L—EQUAL ? 1 ? 1) ; ﬁ




Multipass — Framebuffer Blending

weighting factors

l\

framebuffer color

result color=»|C = C

Incoming (source)
fragment color

m Other equations: SUBTRACT, MIN, MAX
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Multipass — Blending - Weights

glBlendFunc

C=C,-a+C,:(1- o)
m Example: transparency blending (window)
m Welights can be defined almost arbitrarily

= Alpha and color weights can be defined
separately

m GL ONE, GL ZERO, GL DST COLOR,
GL SRC COLOR, GL _ONE_MINUS_ Xxxx
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