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What for?

B |f you want to improve performance...
# ... you have to be able to analyze it!

B Peek at what other people are doing!

B Understand influence of scene design

B Understand influence of hardware

B Will include some optimization tips...
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Overview

B Performance Analysis
¢ Which tools to measure performance?
B Performance Characterization 1

+ Characterize general properties of
scenes and hardware architectures

B Performance Characterization 2
¢ Characterize and find bottlenecks
W Optimization
& Will mostly be result of the above
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Analysis Tools

B Framerate logging
« DIY (do it yourself), FRAPS
B Call tracing/logging
& GLTrace
W External profilers
¢ VTune, Quantify
B Internal profiling (fine-grained)
& RDTSC
W Driver profiling
+ Only available in Direct3D for now...
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Frame Rate Calculation

B Running average

& Great for a quick look

& Obscures spikes over a few frames
B Per frame FPS calculation

+ “Instantaneous FPS”

+ High accuracy

¢ Lots of data

« Graph it out on top of your app

¢ Logitto afile
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FRAPS GLTrace

B Displays frame rate for any OpenGL app
+ by intercepting calls to opengl32.dll

B Average over last few frames

B Has file logging

H Small
performance hit

B Good for quick
comparisons

Michael Wimmer

B Can log all OpenGL calls for any app
W Gives call counts
B Allows reverse engineering (also of models!)

B Cheating... Application
(wireframe) v
W See VU-page for ~ GLTrace-
link... opengl32.dil™ gltrace.txt
W Can use trace for - ‘
simulation! Orlgllnal-dII
opengl32.
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Example Trace (1338 Frames)

738541 gl Vertex3fv
728673 gl TexCoor d2f v
224682 gl Col or 4f v
206474 gl Nor mal 3f v
201074 gl Cal I Li st
180574 gl Begin

180574 gl End

168356 gl Bi ndText ur eEXT

22659 gl Enabl e
21150 glMaterialfv
20557 gl Di sabl e
9622 gl ShadeMbdel
5706 gl PopMatri x
5706 gl PushMat ri x
N 4216 gl Bl endFunc
Vertices 4326.8 3478 gl Mat ri xNbde
: 3164 gl Loadl dentity
Triangles (3D) |2535.3 3010 gl Dept hihsk
q 2546 gl Al phaFunc
Triangles (2D) [939.0 P oM B
Fragments 1353892 2105 gl TexEnvf
1676 gl EndLi st
Image 1024x768 1676 ol Newdi st 2
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External Profiling — Sampling

B Based on sampling at regular intervals
B Example: Intel VTune
+ Expensive, only Intel processors
B How much time is spentin...
LAON
« Other applications
« Driver (kernel- and user-mode)
+ Application (which function, which line of code)
H Pros
& works with any program, no rebuild necessary
+ no slowdowns
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External Profiling — Instrumentation

B Inserts logging directly into code
B Example: Rational Quantify
H Pros
¢ Very accurate
+ True call list and call graph
H Cons
¢ Need to rebuild code
+ Really slows down execution
+ So slow, it invalidates all off-CPU interaction
= Example: main memory, GPU
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Quantify
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Internal Profiling — RDTSC

W Current clock cycle counter

B Fine-grained timing (microseconds)

W Calibrate using Get Ti ckCount ()

B Take into account overhead of rdtsc itself!
B Warm up caches (for tight loops)

LARGE_INTEGER val; // 64-bit integer defined in Win32
__asm
i
cpuid /{ for serialization of out-of-order instructicns
rdtsc
mov val.LowPart, eax
mov val.HighPart, edx
I
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Profiling — Multitasking effects

B Be aware of multitasking! Win2K examples:
# Clock tick every 10 ms - scheduler called
& Thread quantum ~60 ms for foreground apps
¢ > 1000 interrupts per clock tick!
& Accuracy not better than 1 ms for longer runs
W Consider using higher priority for timing

Set PriorityC ass(hProcess,
REALTI ME_PRI ORI TY_CLASS) ;

Set ThreadPriority(hThread,
THREAD_PRI ORI TY_TI ME_CRI TI CAL) ;

¢ Beware thread starvation!
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Profiling: Seeing Half the Picture

W Profiler runs on the CPU
B GPU is a black box

Application
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Profiling: Seeing Half the Picture

B GPU is a black box
B How to guess hidden bottlenecks?

Video Memory

On-Chip Cache Memory
Vertex

Shading

pre-TnL

(T&L) vertex
Transform

Commands limited

System
Memory

CPU

texture
biw a— raster
limked Rasterizatici: e
texture
Textures ‘ ‘ Fragment )t
Frame Buffer

Shading limited
frame buffer b/w limited

and
Raster
Operations
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Profiling Graphics Calls
B RDTSC works reasonably for CPU
¢ With multitasking caveats
B Not so for graphics calls (GPU)
B CPU and GPU run in parallel
B Commands are buffered for GPU

Command

Buffer

Control flow

Command flow
20
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Command Buffering

B Synchronized rendering
B Suboptimal utilization of command buffer

glFinish(); (stalls CPU)

}
AR
/!

m No GPU work done here! *
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Command Buffering

B Asynchronous rendering
W Great for load balancing
B Can introduce latency

SwapBuffers();

...CPU: Current frame...
—_— s = >
- > - —> >
Work is queued up...

GPU .

... GPU: Previous frame >$

Vienna University of Technology *

CPU app
driver
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Profiling Graphics Calls

Case 1: command buffer not full

B RDTSC will measure CPU stuff
+ unpack command and parameters
& prepare for GPU
& maybe texture transfers

& maybe vertex transfers (driver decides on
buffering)

¢ queue command
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Profiling Graphics Calls

Case 2: command buffer full (GPU busy)

B Example: render many large triangles stored
in vertex buffer on card

B RDTSC will measure...
¢ same CPU stuff as before
& PLUS additional wait time for GPU

m Conclusion:
+ Both are useless!
+ Profiling graphics calls is almost impossible
# Use glFinish() to empty command buffer

Vienna University of Technology *
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Driver Profiling

B NVPerfHud (only Direct3D)

m Information about driver internals
# Batch sizes g
¢ Wait times

W Bottleneck
identification

Michael Wimmer 25

Vienna University of Technology *

Driver Profiling

B FxComposer

B Internal information about pixel shaders
+ Cycle count

- | | shader Perf x

TestF¥CheapVsl ~ p0 = Pixel Shader - GeForceFx 5950 -

~
Target: GeForceFy 5350 (NV38) i: Unified Compiler: v56.58 1
Cycles: 36 :: #R Registers: 4

GPU Utilization: 54.00%

Alarge number of registers are being used which are causing register file stalls

PS Instructions: 45

Michael Wimmer 26 Vienna University of Technology *

Performance Characterization 1

B Performance tuning = finding bottlenecks

W First, need to understand characteristics of
scene (as related to hardware)

B Fragment formula

B Depth complexity
B Design strategies
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Fragment Formula
B Relates geometry and fragment processing

B Parameters:
F = number of fragments
T = number of triangles
a = number of fragments per triangle
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Fragment Formula — Meaning

B Different meanings for scenes and hardware
B Scenes

+ Characterizes triangle distribution in scene

& a = average triangle size
B Hardware —

F

. . a=—

+ Typical SGI performance figure: T
“T a-pixel triangles per second”

& a = optimal triangle size
& F, T are rates (“per second”)
& Per-frame and per-second related by fps
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Triangle Area Implications

B Triangle with a pixels is a balance point
between:
¢ Geometry computations per triangle
& Fragment pipeline fill capacity
W Triangles larger than a:
« are fill limited (dominated), rate less than T
W Triangles smaller than a:
& are geometry limited, rate no faster than T

Vienna University of Technology *
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Triangle Area Distribution

Deering Study
B Scenes: Triangle distribution roughly
exponential towards smaller triangles
+ Already for individual objects with LOD
& Even stronger for whole scenes!
B Hardware: historical development
« For SGI, a went from ~1000 to ~50
+ For NVidia hardware, a was typically 8
(assuming 4-sample AA)
& Today: depends on specific vertex/fragment
program complexity!
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Deering Study

W Triangle distribution for architectural scene
« roughly a power function (see log/log plot)
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Triangle Area Distribution Caveats

B Small and large triangles in the same scene!

B Triangles are geometry/fill limited, not
scenes!!!

W Even if app is fill limited overall, increasing
geometric detail will slow it down

B Even if app is geometry limited overall,
increasing pixel complexity will slow it down

W Except if triangle areas are roughly equal!

Vienna University of Technology *
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Triangle Area Caveats

B Don't trust vendor-quoted triangle rates

W Typically only achieved under optimal
conditions
¢ E.g., large batch sizes (>200 triangles)
B However, will see how to get near

Vienna University of Technology *
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Depth Complexity

B Typical scene characterization figure:
F
d=—
I

B Parameters:
& | = number of image pixels
& d = depth complexity (or “overdraw”)
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Depth Complexity

B Measure using stencil buffer
¢ gl Stencil Op(G_KEEP, G__I NCR,
GL_INCR);

Vienna University of Technology *
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Z-Buffer Reads and Writes
B Read-Modify-Write cycle — potentially slow

if (f.z < z[f.x][f.y])

{
color[f.x][f.y] = blend(f);
z[f.x][f.y] = z;

}

B Expected number of writes?
¢1+12+1/3+14+..+1d
& Harmonic numbers; O(log(n))
& Homework assignment (combinatorial problem)

Michael Wimmer 37
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Z-Buffer Reads and Writes

B Important for fillrate
¢ Read-only is faster than read-modify-write
B Even more so with “Deferred Shading”
+ Pixel shading after z-test
& ATI, NVidia call this “Early Z" or “Occlusion Test”
B Different cases for d = 4:
¢ Best case: 1 overwrite
& Worst case: 4 (=d) overwrites
& Expected case for random order: 2 overwrites
-> Sorting by depth is important for new cards! _
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Design Space
B Triangle area vs. depth complexity

a=$—> F:aT:dl 4—d:|£

B Parameters:
& T = Number of triangles
¢ a = Average area of a triangle
& F = Number of fragments
# | = Image size
¢ d = Depth complexity

Michael Wimmer 39
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Designing an 80 Million Triangle Scene

B Assume movie quality image
| =4K by 2.5K =10 MP
¢F=d1=4x10MP =40 MF
B Assume maximum geometric detail
¢ a=0.5 F/T (Nyquist limit)
> T=40MF/0.5=80MT
W Scaling up to 60 Hz:
¢ 60 I/s * 80 MT/I = 4.8 Billion triangles/s
¢ 60 I/s * 40 MF/l = 2.4 Billion fragments/s
B Not quite there yet... .
Vienna University of Technology *
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Design Strategies

B Previous example assumes:
# Culling limits d to 4 (visibility, occlusion)
# Level of detail removes really small triangles
B More realistic scene design:
¢ Do Culling and LOD
& Hardware determines average triangle areal!
B Very difficult to achieve peak triangle and fill
rate simultaneously!

Michael Wimmer 41

Vienna University of Technology *

Performance Characterization 2

B Performance tuning = finding bottlenecks
+ (for pipelined architectures)

B Need to understand characteristics of
rendering pipeline

W Bottlenecks
B Bottleneck identification

Vienna University of Technology *
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What Is a Bottleneck?

B Recall: rendering pipeline
B As fast as slowest unit = bottleneck!

B Example: total throughput is only
5 million vertices/s!

10 MVert/s 5MVert/s 12MVert/s

Application

Geometry

- Geometry stage is bottleneck!

Michael Wimmer 43
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Locating and Eliminating Bottlenecks

W Location: For each stage
+ Vary workload (or remove)
= Measure performance impact

workload

[
+ Clock down
= Measure performance impact
H Elimination: workioad

¢ Decrease workload of bottleneck: I I
g s g g

workload

¢ Increase workload of
non-bottleneck stages:
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Common Bottlenecks

A graphical application can be (one or all of)
B Application-limited
& Almost all applications
# Al, collision detection, vertex copies, ...
B Fill- (Rasterization-)limited
& Today’s games in high resolutions
B Geometry- (Transformation-)limited

« Typical for scientific applications: polygons used
“as is” or generated automatically

Michael Wimmer 45
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Bottleneck Analysis

B [terative optimization process

¢ New bottlenecks appear when removing old
ones

« Don't trust performance increase: 20% increase
here could include 10% decrease elsewhere
B Remember: bottlenecks shift
¢ Can be both geometry and fill limited in the

same frame
¢ Need to do bottleneck analysis for different parts
of scene (scene decomposition)

Vienna University of Technology *
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A Glimpse at PC Architecture

B API calls write to buffers
(commands and data)

B Buffers pulled by DMA from GPU
B Vertex data in indexed arrays

& AGP or video memory

< Efficient pull of data

& Post-TnL vertex cache eliminates redundant
vertex transfers and transforms

B Conclusion: include memory transfers in
bottleneck considerations!
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A Glimpse at PC Architecture
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Video Memory On-Chip Cache Memory
pre-TnL
cache
Memory

o -
texture
cache
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Potential Bottlenecks

Video Memory

On-Chip Cache Memory

AGP

transfer
\ cache transform
limited

Memory
\ setup

4 texture

biw raster
limited

U limited
limited \

fragment
shader
limited

texture
cache

> [Textires T
[Frame Buter |
frame buffer biw limited P

Vienna University of Technology *

Michael Wimmer 49

Bottleneck Identification

exture b

limited

Fragment
limited
Raster
limited

fragment

Vertex
transform

transfer

AGP rate
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Frame Buffer B/W Limited

B Vary all render target color depths (16-bit vs.
32-hit)
< If frame rate varies, application is frame buffer
b/w limited

Video Memory On-Chip Cache Memary

=
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Texture B/W Limited

B Otherwise, vary texture sizes or texture
filtering
¢ Force MIPMAP LOD Bias to +10
+ Point filtering versus bilinear versus tri-linear

< If frame rate varies, application is texture b/w
limited

Vienna University of Technology *
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Fragment or Raster Limited

B Otherwise, vary all render target resolutions

< If frame rate varies, vary number of instructions
of your fragment programs (for newer HW)

= [f frame rate varies, application is fragment
shader limited

= Otherwise, application is raster limited

Video Memory On-Chip Cache Memary

Michael Wimmer
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Vertex Transform Limited

B Otherwise, vary the number of instructions
of your vertex programs (turn on/off lighting,
texture transform for fixed function)

« If frame rate varies, application is vertex
transform limited

Video Memory

Michael Wimmer
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AGP Transfer Limited

W Otherwise, vary vertex format size or AGP
transfer rate (for geometry in AGP memory)

< If frame rate varies, application is AGP transfer
limited

Michael Wimmer 55
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CPU Limited

W Otherwise, application is CPU limited

B Replace all OpenGL calls with dummy calls
« If frame rate varies, app is driver limited
+ Otherwise, app is application limited

On-Chip Cache Memary

I
:pu

Michael Wimmer 56
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Bottleneck Identification

B NULL 3D caveat:
& Speedup may also come from missing
parallelism
B Testing parallelism
& Null 3D
= Absolute best case
< Serialization
m Insert glFinish() at several points
= No more parallel execution
= Absolute worst case

Michael Wimmer 57
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Bottleneck Identification Shortcuts

B Run identical GPUs on different speed
CPUs
< If frame rate varies, application is CPU limited

B Underclock your GPU

« If slower core clock affects performance,
application is vertex-transform, raster, or
fragment-shader limited

« If slower memory clock affects performance,
application is texture or frame-buffer b/w limited

Michael Wimmer 58
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Optimization
B Always after bottleneck analysis
B Eliminate bottlenecks by
& Making more efficient use of resources
= Untapped GPU capabilities
= Optimized memory transfers
& Changing scene properties

B Will look at some optimization tricks for
modern GPUs

Michael Wimmer 59
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Use Efficient API Calls

H Don't:
+ glBegin()/glEnd() for geometry
& Simple vertex arrays
+ glTeximage2D() for each frame
H Do:
+ Vertex buffer objects (recent ARB extension)
= Allows storing geometry in AGP/Video mem
+ Index buffers
= Drawing a complex object: only a single call!
& Texture objects

Michael Wimmer 60
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Batching

B GPUs require large batches
& Large driver overhead for each vertex buffer/array!
B ~50k glDrawTriangles/DrawlndexedPrimitive
calls/s COMPLETELY saturate 1.5GHz Pentium 4
& At 50fps this means 1k buffers/frame!
B Use thousands of vertices per vertex buffer/array
B Use thousands of triangles per call as possible
# Use degenerate triangles to join strips together

& Or: NV_restart_primitive extensions (send -1 for new
strip)

& Or don't use strip, but vertex cache

Michael Wimmer 61
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Indexing, Sorting

B Use indexed primitives (strips or lists)
¢ Only way to use the pre- and post-TnL cache!
+ Not useful in some cases (leaves of a tree)
B Re-order vertices to be sequential in use
¢ To maximize pre-TnL cache usage!
B (Approximately) sort front to back
+ Exploits early occlusion tests
W Sort per texture, shader and render state
B Avoid pipeline stalls (gIReadPixels, ...)
& Exploit parallelism!
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CPU Bottlenecks

B Application limited
# Al, collision detection, network, file I/O
+ Graphics should be negligible!
m Use brute-force GPU algorithms
= Avoid smart algorithms to reduce load
B Driver/API limited
& Too many OpenGL calls
& Unoptimized driver paths (no “fast path”)
& Small batches
# Driver should spend most time idling (VTune)
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AGP Transfer Bottlenecks

B Unlikely...
W Use 16 bit indices
B Eliminate unused vertex attributes (e.g.,
color when normals are specified)
B Eliminate dynamic vertices
# Use vertex shaders for animation instead!
W Use the right API calls (VBO = vertex buffer
object)
« Prefer static (write once) buffers)
B Vertex size should be multiples of 32 bytes *
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Vertex Transform Bottleneck

® Unlikely (usually, bottleneck is before!)
B Eliminate expensive lights
B Reorder vertices for cache, use NVTriStrip
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Fragment Bottleneck

B Fragment shader too long
B Move per-fragment to per-vertex

W Use rough front-to-back order
¢ Or even a z-only pass

Michael Wimmer 66

Vienna University of Technology *

11



Texture Bottlenecks

B Use texture compression and 16-bit maps
B Use mipmaps (help cache locality)

B Beware dependent texture lookups

B Anisotropic/trilinear filtering is slower
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Hardware Fast Paths

B Fast buffer clears

# But: need to clear stencil and depth at the same
time, or turn off stencil

W Lots of other issues

Michael Wimmer
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High-Level Optimizations

B Visibility culling

¢ Don’'t draw what you don't see
B Levels of detail

& Draw only as complex as necessary
B Image-based rendering

& Replace geometry with images
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