Real-Time Rendering

Graphics Programming
OpenGL

Programmlng Guide

Graphics Libraries (APIs)

Glve access to graphics hardware...
= Declarative (What, not How)

m Describe the scene (e.g., scene graphs)

m SGI Open Inventor, SGI Performer,
Renderman, OpenSceneGraph...

m Imperative (How, not What)
m Sequence of drawing commands
m OpenGL, DirectX (Direct3D), Postscript
= More direct control

Vienna University of Technology 2

Graphics Libraries (APIs)

m Using a scene graph API...

Vienna University of Technology 3 ﬁ

Graphics Libraries (APIs)

= Using an immediate-mode API...

Vienna University of Technology 4 ﬁ

Immediate vs. Retained

= Immediate (OpenGL)

m Total control over rendering
m traversal and data structures and formats

m Many subroutine calls
= Driver cannot optimize
= Retained (scene graph, display lists)
= Driver can optimize execution of display lists

= APl can optimize traversal of scene graph
» for different platforms!

m Traversal is difficult to change

Vienna University of Technology 5 ﬁ

The OpenGL Graphics System

= Web site: www.opengl.org

m OpenGL trademark owned by SGl
= More than 70 licensees

m OpenGL is controlled by the “ARB”
m Architecture Review Board

= Members:
Compadg, IBM, Intel, Microsoft, SGI, Evans &

Sutherland, HP, Sun, NVidia, ATI, Apple
m Meeting notes on the Web
-> follow ARB decisions, discussions, ...

Vienna University of Technology 6

A Short OpenGL Freshup

= All primitives made up of vertices...

GL_LAINES .

GL_POLYGON

GL_LINE_STRIP GL_LINE_LOOP

GL_TRIANGLES
’Z‘ GL_QUADS

GL_POINTS

v

t
% S

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN GL_QUAD_STRIP

Vienna University of Technology 7 ﬁ

A Short OpenGL Freshup

= Shading:
From wire frame to texture mapped...
Wire frame (hidden line) flat shading

Gouraud Textured (Combination)

Vienna University of Technology 8

Short History of OpenGL

1982
1983

1991
1992
1995
1996
1998
2000
2001
2002
2003
2004
2008
2008
2009
2010

Silicon Graphics (SGI) incorporated
IRIS GL on IRIS 1000 terminal
(the predecessor to OpenGL)

O00000000O0

nen
nenG
penG
nenG
nenG
penG
nenG
nenG
nenG
nenG

Vienna University of Technology

GL ARB created

_ 1.0 (June 30)

| 1.1

_ specification made public
| 1.2

_ goes open source

Shaders)
Depreciation model)

Geometry shaders)

ONOOCOUTAW

(
%Deprematlon model)
(

Tesselation)

9

Modern Graphics Pipeline

Application |

v

| Command |
v

| Geometry |
v

| Rasterization |
v

| Texture |
v

| Fragment |
v

| Display |
v

Vienna University of Technology 10 é

OpenGL Programing Model

= OpenGL Is a state machine
m All command change state
= Only glVertex causes action

Vienna University of Technology 11

The OpenGL Machine

The OpenGL" graphics system diagram, Version 1.1, Copyright © 1996 Silicon Graphics, Inc. All rights reserved.

L

Erasbellitis

[Vertices
|
1 Evahiators
Verten Arays
]
L2 |
§ Teuturs Caardinate
Input Genkration
al —— Canve
L | l ik
Chfgent
— Values

Matriz
i Contral’ -
LJ 1 Clipping, Pers peciive,
japd s]
Viewport Applicaiion 2 Hastertis
: Apeh Testurinig, | - Per Fragment Dperations
— o
ld_l—‘_‘ | { Fesdback :‘a
Antialias i Frama Buffer
Salection =L H] Atizliasing :
Firk Frame Buffar Cantrol
Primitives —w F

Key to OpenGL Operations

g}

Haotes:

Commands (and constants) are s hawn withaut the
gl (or 6L_| prefis.

The following commands do nat appear in this
diagram: glccum, git leardccum, glHint,

daplay list commands, texture shject cammands, Fh i
commands for abitaining OpenG L st

[giGet commands and gils Enabled, and
glPushattrik and giP opAtirib, Uity library
rautines are nat shown

After their exectution, giDrawdrrays and
glDrawk lements leave affected cument vakies
indeterminate,

Frame Buffer

=

This diagram Is schematic; It may not directly
comes pard 1o any actual OpenGl Implementation.

OpenGL Design Goals

» Platform independent (unlike DirectX)

= Window-system dependent code separate (GLX,
WGL)

= Implementations on Windows, Linux, MacOS, Be,
0S/2, Unix, ...

» Language independent (bindings for C, Java,
Fortran, ...)

= Consistency (unlike DirectX 9)
= Tightly written specification
m Conformance tests and required verification
= Not too tight: not pixel exact
» Invariance across passes (for correct multipass)

Vienna University of Technology 13 j

OpenGL Design Goals

= Complete implementations (unlike DirectX 9)

= Missing hardware features emulated in
software

m Silent error recovery

m Clean interface (unlike DirectX 9)
m State machine

m Most states are orthogonal (i.e., don’t
iInfluence each other, no side effects!)

= Extensiblility (unlike DirectX 9)
m Favors innovation
= New HW features first available on OpenGL!

Vienna University of Technology 14 j

More Goals

= High quality

m Intuitive usabillity (beauty counts)

m Good documentation (Programming Guide)
= Long life...

Vienna University of Technology 15 ﬁ

OpenGL Problems

m Extensibility
= Different extensions for different GPUs
» Hell for production code (games)
» Design by committee
= Unified extension interfaces take long time

= Very slow to adopt non-GPU specific features (e.qg.,
offscreen buffers)

= Non-existent toolset
= Shading debuggers (but: gDebugger)
m Performance tools (but: NVPerfKit)
= Mesh tools (already included in DirectX)

= Mediocre driver support

Vienna University of Technology é

OpenGL Extensions

m SGI maintains central registry

m Carefully documented
m Takes into account previous extensions

= New OpenGL version could be implemented
by applying all extensions

m A bit difficult to read
» Read overview, then “Additions to...”

= Very stable process
m Extensions are refined and improved...

Vienna University of Technology 17 é

OpenGL Extension Categories

= Proprietary: suffixed with vendor
= e.d., SGIS texture lod, NV_fragment _program
m EXT suffix
= Implemented by at least 2 vendors (usually NV,AMD)
m e.g. EXT blend func_separate
m ARB suffix
m Specification controlled by ARB
= ARB_multitexture
= 1.Xx: no suffix
m Required feature for version 1.x

Vienna University of Technology 18 é

EXT_stencil_wrap NVIDIA OpenGL Extension Specifications

Name

EXT stencil wrap
Name Strings

GL EXT stencil wrap
Version

Date: 4/4/2002 Version 1.2
Number

176
Dependencies

None

Various algorithms use the stencil buffer teo "count" the number of
surfaces that a ray passes through. As the ray passes intce an chject,
the stencil buffer iz incremented. Asg the ray passes cubt of an chject,
the stencil buffer is decremented.

GL redquires that the stencil increment cperation clamps to its maximum
value. For algorithms that depend on the difference between the sum
of the increments and the sum of the decrements, clamping causes an
erronecus result.

This extensicn provides an enable for both maximum and minimum wrapping
of stencil wvalues. Instead, the stencil value wraps in both directions.

surfaces that a ray passes through. As the ray passes intce an chject,
the stencil buffer is incremented. As the ray passes ocubt of an cbhject,
the stencil buffer is decremented.

GL requires that the stencil increment coperaticon clamps to its maximum
wvalue. For algorithms that depend on the difference between the sum
of the increments and the sum of the decrements, clamping causes an
errcnecus result.

This extension provides an enable for both maximum and minimum wrapping
of stencil wvalues. Instead, the stencil value wraps in both directions.

Twoe additicnal stencil coperations are specified. These new operations

are similiar to the existing INCR and DECR cperaticns, but they wrap their
result instead of saturating it. This functicnality matches the new
stencil operaticns introduced by Directi 6.

Gw Procedures and F‘un-:::tic:-:rD

Nore

New Tokens

Bocepted by the <sfails, <dpfails, and =<dppass:= parameter of

StencilOp:
INCE WRAP EZXT 0x8507
DECE_WRAP EXT 0x8508

Additions to Chapter 2 of the GL Specification (OpenGL Operatiocn)

None

182

NVIDIA OpenGL Extension Specifications EXT_stencil_wrap

Additions to Chapter 3 of the GL Specification (Rasterization)

None

Additions to Chapter 4 of the GL Specification {(Per-Fragment Operations
nd the Framsbuffer)

Section 4.1.4 "Stencil Test" (page 144), change the 3rd paragraph to read:

"... The svmbolic constants are EKEEP, ZERC, REPLACE, INCE, DECE,
INVERT, INCRE WRAP EXT, and DECR WRAP EXT. The ccrrespond to

keeping the current wvalue, setting it to zero, replacing it with

the reference wvalue, incrementing i1t with saturation, decrementing
it with saturaticn, bitwise inverting it, incrementing it without
saturation, and decrementing it without saturation. For purposes of
incrementing and decrementing, the stencil bhits are considered as an
unsigned integer. Incrementing or decrementing with saturaticon will
clamp values at 0 and the maximum representable value. Incrementing
or decrementing without saturaticn will wrap such that incrementing
the maximum representable value results in 0 and decrementing 0
results in the maximum representable value. Lot

Additione to Chapter 5 of the GL Specification (Special PFunctions)
Neone

Additione to Chapter 6 of the GL Specification (State and State Regqueste)
HNone

Additions to the GLX Specificaktion

None

None

Additione to Chapter 6 of the GL Specification (State and State Regquests)
None

Additione to the GLX Specification
None

GLX Protocol
None

Errors
INVALID ENUM is generated by StencilOp if any of its parameters
are not KEEP, ZERC, REPLACE, INCR, DECER, INVERT, IMNCR WRAP EXT,
or DECR_WRAP EXT.

New State

(table &£.15, page 205

Get Value Type Get Command Initial value Sec Attribute

STENCIL FAIL 23 GetIntegerv KEEP 4.1.4 stencil-buffer
STENCIL PASS DEPTH FAIL 8 GetIntegerv EEEP 4.1.4 stencil-buffer
STENCIL PAS3S DEPTH PASS 8 GetIntegerv EEEP 4.1.4 stencil-buffer

WNOTE: the only change is that Zé type changes to Z8

New Implementation Dependent State

None

183

Using Extensions

m Get glext.h from www.opengl.org
m Check for extension availability

= Acquire function pointer(s) (only Win32)
m Easier: use glew or glee

#include <GL/glut.h>
#include <GL/glext.h>

PFNGLDRAWRANGEELEMENTSEXTPROC glDrawRangeElementsEXT;

if (glutExtensionSupported("GL EXT draw range elements")
{

glDrawRangeElementsEXT = (PFNGLDRAWRANGEELEMENTSEXTPROC)
wglGetProcAddress ("glDrawRangeElementsEXT") ;

Vienna University of Technology 23 é

OpenGL 2.0

= Main novelty: shading language GLSL
m Vertex and fragment shaders

m Replace fixed functionality
= Shader: high-level language (C-like)

m OpenGL driver: compiler and linker for
shaders

m Vertex-, texture coordinates etc.:
abstract input values to shader function

= Arbitrary calculations possible
m Requwes DX9 (GeforceFX/6) cards

Vienna Un sity of Technology

OpenGL 3.0

» Not much new

m Vertex Array Objects
m Encapsulate VBO state

» SRGB framebuffers

m Texture arrays

m Transform feedback

m Extensions: geometry shaders, instancing, ...
m Depreciation mechanism!

Vienna University of Technology 25 é

OpenGL 3.2

m Geometry shaders

Vienna University of Technology

26

OpenGL 4.0/3.3

m Tesselation

m Timer queries

m Double precision floating point
m Etc.

m OpenGL 3.3: for compatibility with older
hardware

Vienna University of Technology 27

OpenGL ES

= For embedded systems
m Reduced instruction set
» Developers love it ©

m OpenGL 4.1 is backwards compatible with
OpenGL ES!

Vienna University of Technology 28

)

ths

o -
.
-

i

i S
.

i

o

-
.
.
. .
o .
.. N

B -

-

.
-
.
-
.
-
.
-

%%?#.ﬁ
*
*

-
-
-
-
.

.
-
- -

-
-
-
-
.

-

1 -
v
=
-

.

-
-
-

-
-
-

P

image pa

orthogonal

itecture
dependent (

IONS In

®
.
k@
E
.
.
.
b

-
-
i

o
-

-

‘

=
|

A i
o
.
T
P
;.
e

B

29

ty of Technology

IVersi

OpenGL Arch

= Symmetric geometry and

m Operat

Image

Vienna Un

; f
Generation | Traversal |

!

phucation an gner

Vienna University of Technology 30 j

They match!

| Application Generation | Traversal ;’f Xformation
T
| Command
v
| Geometry
v
| Rasterization
v
| Texture
v
| Fragment
v
| Display
v

Vienna University of Technology

