Real-Time Rendering (Echtzeitgraphik)

Dr. Michael Wimmer wimmer@cg.tuwien.ac.at

Shading and Lighting Effects

- Environment mapping
 - Cube mapping
 - Sphere mapping
 - Dual-paraboloid mapping
- Reflections, Refractions, Speculars,
 Diffuse (Irradiance) mapping
- Normal mapping
- Parallax normal mapping
- Advanced Methods

Environment Mapping

Main idea: fake reflections using simple textures

Vienna University of Technology

Environment Mapping

- Assumption: index envmap via orientation
 - Reflection vector or any other similar lookup!
- Ignore (reflection) position! True if:
 - reflecting object shrunk to a single point
 - OR: environment infinitely far away
- Eye not very good at discovering the fake

Can be an "Effect"

- Usually means: "fake reflection"
- Can be a "Technique" (i.e., GPU feature)
 - Then it means:
 - "2D texture indexed by a 3D orientation"
 - Usually the index vector is the reflection vector
 - But can be anything else that's suitable!

- Uses texture coordinate generation, multitexturing, new texture targets...
- Main task:
 Map all 3D orientations to a 2D texture
- Independent of application to reflections

OpenGL texture targets

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGB8, w, h, 0, GL_RGB, GL_UNSIGNED_BYTE, face_px);

Cube map accessed via vectors expressed as 3D texture coordinates (s, t, r)

Vienna University of Technology

Cube Mapping

■ 3D \rightarrow 2D projection done by hardware

- Highest magnitude component selects which cube face to use (e.g., -t)
- Divide other components by this, e.g.:
 s' = s / -t
 r' = r / -t
- (s', r') is in the range [-1, 1]
- remap to [0,1] and select a texel from selected face

Still need to generate useful texture coordinates for reflections

Generate views of the environment

- One for each cube face
- 90° view frustum
- Use hardware to render directly to a texture
- Use reflection vector to index cube map
 - Generated automatically on hardware:
 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE,
 GL_REFLECTION_MAP);

Warning: addressing not intuitive (needs flip)

Watt 3D CG

Vienna University of Technology

Renderman/OpenGL

Advantages

- Minimal distortions
- Creation and map entirely hardware accelerated
- Can be generated dynamically
- Optimizations for dynamic scenes
 - Need not be updated every frame
 - Low resolution sufficient

Earliest available method with OpenGL

- Only texture mapping required!
- Texture looks like orthographic reflection from chrome hemisphere
 - Can be photographed like this!

Maps all reflections to hemisphere

- Center of map reflects back to eye
- Singularity: back of sphere maps to outer ring

Sphere Mapping

- Texture coordinates generated automatically
 - glTexGeni(GL_S, GL_TEXTURE_GEN_MODE,
 - Uses eye-space reflection vector (internally)
- Generation
 - Ray tracing
 - Warping a cube map (possible on the fly)
 - Take a photograph of a metallic sphere!!
- Disadvantages:
 - View dependent → has to be regenerated even for static environments!
 - Distortions

Vienna University of Technology

Use orthographic reflection of two parabolic mirrors instead of a sphere

Texture coordinate generation:

- Generate reflection vector using OpenGL
- Load texture matrix with $P \cdot M^{-1}$
 - M is inverse view matrix (view independency)
 - P is a projection which accomplishes s = r_x / (1-r_z) t = r_y / (1-r_z)

Texture access across seam:

- Always apply both maps with multitexture
- Use alpha to select active map for each pixel

Advantages

- View independent
- Requires only projective texturing
- Even less distortions than cube mapping

Disadvantages

- Can only be generated using ray tracing or warping
 - No direct rendering like cube maps
 - No photographing like sphere maps

Summary Environment Mapping

	Sphere	Cube	Paraboloid
View-	dependent	independent	independent
Generation	warp/ray/ photo	direct rendering/ photo	warp/ray
Hardware required	texture mapping	cube map support	projective texturing, 2 texture units
Distortions	strong	medium	little

Angle of incidence = angle of reflection

- OpenGL uses eye coordinates for R
- Cube map needs reflection vector in world coordinates (where map was created)
- Joad texture matrix with inverse 3x3 view matrix
- Best done in fragment shader

Example Vertex Program (CG)


```
void C7E1v reflection(float4 position : POSITION,
                      float2 texCoord : TEXCOORD0,
                      float3 normal : NORMAL,
                  out float4 oPosition : POSITION,
                  out float2 oTexCoord : TEXCOORD0,
                  out float3 R
                                       : TEXCOORD1,
             uniform float3 eyePositionW,
              uniform float4x4 modelViewProj,
              uniform float4x4 modelToWorld,
            uniform float4x4 modelToWorldInverseTranspose)
{
  oPosition = mul(modelViewProj, position);
  oTexCoord = texCoord;
  // Compute position and normal in world space
  float3 positionW = mul(modelToWorld, position).xyz;
  float3 N = mul((float3x3) modelToWorldInverseTranspose, normal);
 N = normalize(N);
```

```
// Compute the incident and reflected vectors
float3 I = positionW - eyePositionW;
R = reflect(I, N);
```


}

out float4 color : COLOR,

uniform float reflectivity, uniform sampler2D decalMap, uniform samplerCUBE environmentMap)

// Fetch reflected environment color
float4 reflectedColor = texCUBE(environmentMap, R);

// Fetch the decal base color
float4 decalColor = tex2D(decalMap, texCoord);

```
color = lerp(decalColor, reflectedColor,
reflectivity);
```


{

}

Refractive Environment Mapping

Use refracted vector for lookup: Snells law: $\eta_1 \sin \theta_I = \eta_2 \sin \theta_T$

Demo

Vienna University of Technology

Specular Environment Mapping

- We can prefilter the environment map
 - Equals specular integration over the hemisphere
 - Phong lobe (cos^n) as filter kernel
 - R as lookup

Prefilter with cos()

- Equals diffuse integral over hemisphere
- N as lookup direction
- Integration: interpret each pixel of envmap as a light source, sum up!

OGRE Beach Demo

Author: Christian Luksch

http://www.ogre3d.org/wiki/index.php/HDRlib

Vienna University of Technology

- "Cheap" technique
 - Highly effective for static lighting
 - Simple form of image based lighting
 - Expensive operations are replaced by prefiltering
- Advanced variations:
 - Separable BRDFs for complex materials
 - Realtime filtering of environment maps
 - Fresnel term modulations (water, glass)
- Used in virtually every modern computer game

Environment map creation:

- AMDs CubeMapGen (free)
 - Assembly
 - Proper filtering
 - Proper MIP map generation
 - Available as library for your engine/dynamic environment maps
- HDRShop 1.0 (free)
 - Representation conversion

Spheremap to Cubemap

- Simulating smooth surfaces by calculating illumination at each pixel
- Example: specular highlights

linear intensity interpolation

Bump Mapping / Normal Mapping

Simulating rough surfaces by calculating illumination at each pixel

- Bump/Normalmapping invented by Blinn 1978.
- Efficient rendering of structured surfaces
- Enormous visual Improvement without additional geometry
- Is a local method (does not know anything about surrounding except lights)
- > Heavily used method!
- Realistic AAA games normal map every surface

Normal Mapping

Fine structures require a massive amount of polygons

Too slow for full scene rendering

×.

- But: perception of illumination is not strongly dependent on position
- Position can be approximated by carrier geometry
- Idea: transfer normal to carrier geometry

- But: perception of illumination is not strongly dependent on position
- Position can be approximated by carrier geometry
- Idea: transfer normal to carrier geometry

Result: Texture that contains the normals as vectors

- Red X
- Green Y
- Blue Z

- Saved as range compressed bitmap ([-1..1] mapped to [0..1])
- Directions instead of polygons!
- Shading evaluations executed with lookup normals instead of interpolated normal

Normal Mapping

Additional result is heightfield texture

 Encodes the distance of original geometry to the carrier geometry

- Normal mapping does not use the heightfield
 - No parallax effect, surface is still flattened
- Idea: Distort texture lookup according to view vector and heightfield
 - Good approximation of original geometry

We want to calculate the offset to lookup color and normals from the corrected position T_n to do shading there

Image by Terry Welsh

Rescale heightmap h to appropriate values: h_n = h*s -0.5s (s = scale = 0.01)

- Assume heightfield is locally constant
 - Lookup heightfield at T₀
- Trace ray from T₀ to eye with eye vector V to height and add offset:

$$T_n = T_0 + (h_n * V_{x,y} / V_z)$$

- Problem: At steep viewing angles, V_z goes to zero
 - Offset values approach infinity
- Solution: we leave out V_z division:

$$\Gamma_{n} = T_{0} + (h_{n} * V_{x,y})$$

Effect: offset is limited

Image by Terry Welsh

Normalmap Parallay_normalman

Author:Terry Welsh

- Original Bump Mapping idea has theory that is a little more involved!
- Assume a (u, v)-parameterization
 - I.e., points on the surface P = P(u,v)
- Surface P is modified by 2D height field h

- P_u, P_v: Partial derivatives: Easy: differentiate, treat other vars as constant! (or see tangent space)
 Both derivatives are in tangent plane
- Careful: normal normalization...

$$\mathbf{N}(\mathbf{u},\mathbf{v}) = \mathbf{P}_{\mathbf{u}} \times \mathbf{P}_{\mathbf{v}}$$

 $\square N_n = N / |N|$

→ Displaced surface:
 P'(u,v) = P(u,v) + h(u,v) N_n(u,v)

Mathematics

Perturbed normal:
$$N'(u,v) = P'_{u} \times P'_{v}$$

$$P'_{u} = P_{u} + h_{u} N_{n} + h N_{nu}$$

$$\sim P_{u} + h_{u} N_{n} \text{ (h small)}$$

$$P'_{v} = P_{v} + h_{v} N_{n} + h N_{nv}$$

$$\sim P_{v} + h_{v} N_{n}$$

$$\rightarrow N' = N + h_u (N_n \times P_v) + h_v (P_u \times N_n)$$
$$= N + D "offset vector"$$
(D is in tangent plane)

Cylinder Example

Dependence on surface parameterization

$$D = f(P_u, P_v)$$

- Map tied to this surface \rightarrow don't want this!
- What to calculate where?
 - Preproces, per object, per vertex, per fragment
- Which coordinate system to choose?

Problem: where to calculate lighting?

- Object coordinates
 - Native space for normals (N)
- World coordinates
 - Native space for light vector (L), env-maps
 - Not explicit in OpenGL!
- Eye Coordinates
 - Native space for view vector (V)
- Tangent Space
 - Native space for normal maps

Basic Algorithm (Eye Space)

- For scene (assume infinite L and V)
 - Transform L and V to eye space and normalize
 - Compute normalized H (for specular)
- For each vertex
 - Transform N_n, P_u and P_v to eye space
 - Calculate $B1 = N_n \times P_v$, $B2 = P_u \times N_n$, $N = P_u \times P_v$
- For each fragment
 - Interpolate B1, B2, N
 - Fetch $(h_u, h_v) = texture(s, t)$
 - Compute N' = N + $h_u B1 + h_v B2$
 - Normalize N'
 - Using N' in standard Phong equation

- Concept from differential geometry
- Set of all tangents on a surface
- Orthonormal coordinate system (frame) for each point on the surface:

$$N_{n}(u,v) = P_{u} \times P_{v} / |P_{u} \times P_{v}|$$

T = P_u / |P_u|
B = N_n x T

A natural space for normal maps
 Vertex normal N = (0,0,1) in this space!

- Cylinder Tangent Space:
 N_n(u,v) = P_u x P_v / |P_u x P_v| T = P_u / |P_u| B = N_n x T
- Tangent space matrix: TBN column vectors

- "Normal Mapping"
- For each vertex
 - Transform light direction L and eye vector V to tangent space and normalize
 - Compute normalized Half vector H
- For each fragment
 - Interpolate L and H
 - Renormalize L and H
 - Fetch N' = texture(s, t) (Normal Map)
 - Use N' in shading

 $\blacksquare B = P_v / |P_v|$

- Decouples bump map from surface!
- Recall formula:

 $N' = N + h_u (N_n \times P_v) + h_v (P_u \times N_n)$

Convert to tangent space:

$$\begin{split} N_n \times P_v &= -\mathbf{T} |P_v| & \mathbf{B} \\ P_u \times N_n &= -\mathbf{B} |P_u| & \mathbf{T} \\ |N| &= |Pu \times Pv| &= |Pu| |Pv| \sin \alpha & \mathbf{N} \\ N' &= \mathbf{N} - h_u \mathbf{T} |P_v| - h_v \mathbf{B} |P_u| & \text{divide by } |Pu| |Pv| \end{split}$$

 \rightarrow N' ~ N_n sin α - h_u/ |P_u| **T** - h_v / |P_v| **B**

- $\mathbf{N'} \sim \mathbf{N_n} \sin \alpha h_u / |P_u| \mathbf{T} h_v / |P_v| \mathbf{B}$
 - Square patch \rightarrow sin $\alpha = 1$
 - $|P_u|$ and $|P_v|$ assumed constant over patch
- N' ~ $N_n (h_u / k) T (h_v / k) B = N_n + D$

• N' ~ N_n - (h_u / k) T - (h_v / k) B = N_n + D

In tangent space (TBN):

N_n = (0, 0, 1), **D** = (-
$$h_u / k_r - h_v / k_r 0$$
)

- "Scale" of bumps: k
 - Apply map to any surface with same scale
- Alternative: $\mathbf{D} = (-h_u, -h_v, 0)$

Apply k at runtime

 h_u, h_v : calculated by finite differencing from height map

- Also: normal perturbation maps
- **N'** \sim **N**_n (h_u / k) **T** (h_v / k) **B** = **R N**_n
- R: rotation matrix
- In tangent space (TBN):
 - $N_n = (0, 0, 1) \rightarrow N'$ third row of **R**
 - N' = Normalize($-h_u / k, -h_v / k, 1$)
- "Scale" of bumps: k
 - Comparison to offset maps:
 - Need 3 components
 - Better use of precision (normalized vector)

Creating Tangent Space

TU

- Trivial for analytically defined surfaces
 - Calculate P_u, P_v at vertices
- Use *texture space* for polygonal meshes
 - Induce from given texture coordinates per triangle

•
$$P(u, v) = a u + b v + c = P_u u + P_v v + c !$$

- 9 unknowns, 9 equations (x,y,z for each vertex)!
- Transformation from object space to tangent space

$$\begin{bmatrix} L_{tx} & L_{ty} & L_{tz} \end{bmatrix} = \begin{bmatrix} L_{ox} & L_{oy} & L_{oz} \end{bmatrix} \begin{bmatrix} T_{x} & B_{x} & N_{x} \\ T_{y} & B_{y} & N_{y} \\ T_{z} & B_{z} & N_{z} \end{bmatrix}$$

Creating Tangent Space - Math

- P(s, t) = \boldsymbol{a} s + \boldsymbol{b} t + \boldsymbol{c} , linear transform! → P_u(s,t) = \boldsymbol{a} , P_v(s,t) = \boldsymbol{b}
- Texture space:

•
$$u_1 = (s_1, t_1) - (s_0, t_0), u_2 = (s_2, t_2) - (s_0, t_0)$$

Local space:

•
$$v_1 = P_1 - P_0, v_2 = P_2 - P_0$$

$$[P_u P_v] u_1 = v_{1,} [P_u P_v] u_2 = v_2$$

Matrix notation:

$$[P_u P_v] [u_1 u_2] = [v_1 v_2]$$

Creating Tangent Space - Math

$$P_{u} P_{v} [u_{1} u_{2}] = [v_{1} v_{2}]$$

$$P_{u} P_{v} = [v_{1} v_{2}] [u_{1} u_{2}]^{-1}$$

$$[u_{1} u_{2}]^{-1} = 1/|u_{1} u_{2}| [u_{2y} - u_{2x}]$$

$$[-u_{1y} u_{1x}]$$

- Result: very simple formula!
- Finally: calculate tangent frame (for triangle):

$$T = P_u / |P_u|$$
$$B = N_n \times T$$

Example for key-framed skinned model

 Note: average tangent space between adjacent triangles (like normal calculation)

bump-skin height field

decal skin (unlit!)

Quake 2 Example

Normal map Example

Model by Piotr Slomowicz

Normal map Example

Normal map Example

Normal mapping + Environment mapping

Normal and Parallax mapping combines beautifully with environment mapping

Demo

For each vertex

- Transform V to world space
- Compute tangent space to world space transform (T, B, N)
- For each fragment
 - Interpolate and renormalize V
 - Interpolate frame (T, B, N)
 - Lookup N' = texture(s, t)
 - Transform N' from tangent space to world space
 - Compute reflection vector R (in world space) using N'
 - Lookup C = cubemap(R)

Artifacts

- No shadowing
- Silhouettes still edgy
- No parallax for Normal mapping
- Parallax Normal Mapping
 - No occlusion, just distortion
 - Not accurate for high frequency height-fields (local constant heightfield assumption does not work)
 - No silhouettes

Normal Mapping Effectiveness

- No effect if neither light nor object moves!
- In this case, use light maps
- Exception: specular highlights

Horizon Mapping

- Improve normal mapping with (local) shadows
- Preprocess: compute n horizon values per texel
- Runtime:
 - Interpolate horizon values
 - Shadow accordingly

Horizon Mapping Examples

Eduard Gröller, Stefan Jeschke

Relief Mapping

At runtime: perform ray casting in the pixel shader

- Calculate entry (A) and exit point (B)
- March along ray until intersection with height field is found
- Binary search to refine the intersection position

Relief Mapping Examples

Texture mapping

Parallax mapping

Relief mapping

Eduard Gröller, Stefan Jeschke

Parallax-normalmapping

~ 20 ALU instructions

Relief-mapping

Vienna University of Technology

- Marching and binary search:
- ~300 ALU instructions
- + lots of texture lookups

74

- Higher-Order surface approximation relief mapping
 - Surface approximated with polynomes
 - Produces silhouettes
- Prism tracing
 - Produces near-correct silhouette
- Many variations to accelerate tracing
 - Cut down tracing cost
 - Shadows in relief

Normal and Parallax normal map Toolset

- DCC Packages (Blender, Maya, 3DSMax)
- Nvidia Normalmap Filter for Photoshop or Gimp Normalmap filter
 - Create Normalmaps directly from Pictures
 - Not accurate!, but sometimes sufficient
- NVIDIA Melody
- xNormal (free)
- Crazybump (free beta)
 - Much better than PS/Gimp Filters!
- Tangent space can be often created using graphics/game engine

Tipps

Download FXComposer and Rendermonkey

- Tons of shader examples
- Optimized code
- Good IDE to play around
- Books:
 - GPU Gems Series
 - ShaderX Series
 - Both include sample code!

