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Overview M

OpenGL lighting refresher

Texture Spaces
Texture Aliasing and Filtering

Multitexturing
m Lightmapping
Texture Coordinate Generation

m Projective Texturing
m Multipass Rendering
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But Before We Start: Shading

Flat shading
m compute light interaction per polygon
m the whole polygon has the same color
m Gouraud shading
m compute light interaction per vertex
m interpolate the colors
m Phong shading
m interpolate normals per pixel
m Remember: difference between
m Phong Light Model
m Phong Shading
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But Before We Start: OpenGL Lighting

m Phong light model at each vertex (glLight, ...)
m Local model only (no shadows, radiosity, ...)
m ambient + diffuse + specular (glMateriall)

.+

m Fixed function: Gouraud shading
m Note: need to interpolate specular separately!

m Phong shading: calculate Phong model in
fragment shader
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Why Texturing? TU

WIEN

m Idea: enhance visual appearance of plain surfaces
by applying fine structured details
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OpenGL Texture Mapping

m Basis for most real-time rendering effects

m Look and feel of a surface
m Definition:

m Areqularly sampled function that is mapped onto
every fragment of a surface

m Traditionally an image, but...

m Can hold arbitrary information
m Textures become general data structures
m Will be interpreted by fragment programs
m Can be rendered into =2 important!
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Types of Textures

m Spatial Layout
m 1D, 2D, 3D
m Cube Maps

m Formats (too many), e.g. OpenGL

m LUMINANCE16_ALPHA16: 32bit =2 x 16 bit bump
map

m RGBA4: 16bit =4 x 4 colors
m RGBA_FLOAT32: 128 bit =4 x 32 bit float

m compressed formats, high dynamic range
formats, ...
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Texturing: General Approach

?Texels

Texture space (u,v) Object space (Xo,Yo,Zo) Image Space (X,,y,)

V (Projection etc.)

i
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Texture Spaces

Modeling

Vienna University of Technology

Object space
(X,Y,Z2,W)

Parameter Space

(s,t,r,q)

Texture Space
(u,v)
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Rendering

Texture
projection

Texture
function




Texture Projectors

Where do texture coordinates come from?

m Online: texture matrix/texcoord generation

m Offline: manually (or by modeling prog)
spherical cylindrical planar natural
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Texture Projectors

Where do texture coordinates come from?

m Offline: manual UV coordinates by DCC program
m Note: a modeling Problem!
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Texture Functions M

m How to extend texture beyond the border?

m Border and repeat/clamp modes
m Arbitrary (s,t,...) 2 [0,1] = [0,255]x[0,255]

repeat

'l"‘;' W E

mp border
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m Problem: One pixel in image space covers many texels
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Texture Aliasing M

m Caused by undersampling: texture information is lost

Texture space

Image space
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Texture Anti-Aliasing

m A good pixel value is the weighted mean of the pixel area
projected into texture space

Texture space U Image space g
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Texture Anti-Aliasing: MIP Mapping

= MIP Mapping (“Multum In Parvo”)

m Texture size is reduced by factors of 2
(downsampling = "much info on a small area")

m Simple (4 pixel average) and memory efficient
m Lastimage is only ONE texel
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Texture Anti-Aliasing: MIP Mapping

m MIP Mapping Algorithm

:= ld(max(d,,d.)) MLB Map level"
o T0 = value from texture D,= trunc (D)
m Use bilinear interpolation

Bilinear interpolation Trilinear interpolation
- -



Trilinear interpolation:
T, := value from texture D, = D,+1 (bilin.interpolation)
Pixel value := (D,—D)-T, + (D—D,)-T,
Linear interpolation between successive MIP Maps

Avoids "Mip banding" (but doubles texture lookups)
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Texture Anti-Aliasing: Mip Mapping M

m Other example for bilinear vs. trilinear filtering
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Texture Anti-Aliasing

m Bilinear reconstruction for texture magnification (D<O0)
("upsampling”)

m Weight adjacent texels by distance to pixel position

T(u+du,v+dv)

= du-dv-T(u+1,v+1)
+ du-(1-dv)-T(u+1,v)
+ (1-du)-dv-T(u,v+1)
+ (1-du)-(1-dv)-T(u,v)

Eduard Groller, S e%%( e!c,'(lzr[kg S p ace u 21 #




Anti-Aliasing (Bilinear Filtering Example)

Nearest neighbor Bilinear filtering i
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Anti-Aliasing: Anisotropic Filtering

m Anisotropic Filtering

m View dependent filter kernel

= Implementation: summed area table, "RIP Mapping”,
"footprint assembly" , “sampling”

(8

Texture space
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Texture Anti-aliasing

m Everything is done in hardware, nothing much to
do!

B gluBuildZDMipmaps () generates MIPmaps

m Set parametersin glTexParameter ()

® GL LINEAR MIPMAP NEAREST
= GL TEXTURE MAG FILTER

m Anisotropic filtering is an extension:
m GL EXT texture filter anilisotropic

m Number of samples can be varied (4x,8x,16x)
m Vendor specific support and extensions
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Signal Theory

m Fourier Transform of signal = frequency space
(,,spectrum®)

m Multiplication (mul) in primary space =
Convolution (conv) in frequency space
m Typical signals and their spectra:
m Box <->sin(x)/x (=,,sinc”)
m Gaussian <-> Gaussian
m Impulse train <-> Impulse train
m Width inverse proportional!
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CG Signal Pipeline: Overview

nitial Sampling

m Resampling

m Display
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CG Signal Pipeline: Initial Sampling

m Input: continuous signal

m Nature or computer generated
m Bandlimiting: remove high frequencies
m conv sinc <-> mul box

m Happens in camera optics, lens of eye, or
antialiasing (direct convolution, supersampling)

m Sampling:
m mul impulse train <-> conv impulse train
m Leads to replica of spectral

m Result: image or texture
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CG Signal Pipeline: Resampling

Input: Samples = discrete signal (usually texture)

m Reconstruction:
m conv sinc <-> mul box
m ,Removes” replica of spectrum in sampled repr.
m Bandlimiting:
m Only required if new sampling frequency is lower!
m Typically through mipmapping
m Sampling

m Result: another texture or final image (=frame
buffer)
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CG Signal Pipeline: Display M

m Input: Samples (from frame buffer)

m Reconstruction
m Using display technology (e.g. CRT: Gaussian!)

m Result: continuous signal (going to eye)
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CG Signal Pipeline: Observations

m Practice: substitute sinc by Gaussian

m sinc has negative values
m Gaussian can be cut off gracefully

m ,Reconstructionis really an interpolation!
m Reconstruction # Antialiasing!

m Aliasing: overlap of sighal replica in sampling
m Bandlimiting = Antialiasing

m Magnification =2 reconstruction only

m Minification = bandlimiting + reconstruction
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CG Signal Pipeline: Full Scene Antialiasing

m Supersamling

m Multisampling (MSAA): combines
m Supersampling (for edges)
m Texture filtering (for textures)
m Only one shader evaluation per final pixel
m Morphological Antialiasing (FXAA, SMAA, ...):
m Postprocess
m Analyzes image, recovers edges, antialiases them
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Multitexturing

m Apply multiple textures in one pass

m Integral part of programmable shading
m e.g. diffuse texture map + gloss map
m e.g. diffuse texture map + light map
m Performance issues
m How many textures are free?
m How many are available
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Multitexture — How?

m Simple(!) texture environment example:

glActiveTexture (GL TEXTUREl) ;
glTexEnvi (GL TEXTURE ENV, ..)
GL TEXTURE ENV MODE, GL COMBINE) ;
GL COMBINE RGB GL MODULATE) ;

GL SOURCEl _RGB,JGL TEXTURE) ;

, GL_SRC COLOR) ;
GL PREVIOUS),
GL OPERANDZ _REB, GL SRC COLOR) ;

m Programmable shading makes this easier!
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Example: Light Mapping

m Used in virtually every commercial game

m Precalculate diffuse lighting on static objects
m Only low resolution necessary
m Diffuse lighting is view independent!

m Advantages:

m No runtime lighting necessary
m VERY fast!

m Can take global effects (shadows, color bleeds)
Into account
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Light Mapping M

Original LM texels Bilinear Filtering

Vienna University of Technology 36



Light Mapping

Original scene Light-mapped
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Example: Light Mapping M

m Precomputation based on non-realtime methods

m Radiosity

m Raytracing
m Monte Carlo Integration
m Pathtracing
m Photonmapping
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Light Mapping

Lightmap

Vienna University of Technology 39



Light Mapping

Original scene Light-mappd o
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Ambient Occlusion

m Special case of light mapping
m Cos-weighted visibility to environment modulates

intensity: ‘
J”—N 4“\\\ \
f’ .-'INh \\

P

4, = %LL;,M(N-M)@
m Darker where more occluded
m ,Soft shadow due to diffuse sky“
m Option: “per object” lightmap
m Allows to move object
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Ambient Occlusion

Model/Texture: Rendermonkey
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Light Mapping Issues

m Map generation:

m Use single map for group of coplanar polys
m Lightmap UV coordinates need to be in (0..1)x(0..1)

m Map application:
m Premultiply textures by light maps
m Why is this not appealing?
m Multipass with framebuffer blend
m Problems with specular

= Multitexture
m Fast, flexible
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Light Mapping Issues

m Why premultiplication is bad...

Full Size Texture
(with Lightmap)

Tiled Surface Texture
plus Lightmap

- use tileable surface textures and low resolution
lightmaps
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Light Mapping/AO Toolset M

m DCC programs (Blender, Maya...)

m Game Engines (Irrlicht)
m Light Map Maker (free)

m Ambient Occlusion:
m xNormal
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Texture Coordinates

m Specified manually (glMultiTexCoord())

m Using classical OpenGL texture coordinate
generation

m Linear: from object or eye space vertex coords
m Special texturing modes (env-maps)

m Can be further modified with texture matrix
m E.g., to add texture animation

m Can use 3rd or 4th texture coordinate for
projective texturing!

m Shader allows complex texture lookups!
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Texture Coordinate Generation

m Specify a “plane” (i.e., a 4D-vector) for each
coordinate (s,t,r,q)

m Example:s=p, x+p,y+p;z+p, W

GLfloat Splane[4] = { pl, P2, pP3, P4 };
glTexGenfv(GL S, GL EYE PLANE, Splane);
glEnable (GL TEXTURE GEN S);

m Think of this as a matrix T with plane parameters as
row vectors
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Texture Coordinate Generation

m Object-linear: S

m Eye-linear: g W _
T,=T- M1
(M...Modelview matrix at
time of specification!) S
m Effect: uses coordinate space
at time of specification! =T
m Eye: M=identity r
m World: M=view-matrix q

object

~—
S N < X

- T eye
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Texture Animation

m Classic OpenGL

m Can specify an arbitrary 4x4 Matrix,
each frame!

O
m There is also a texture matrix stack!

m Shaders allow arbitrary dynamic calculations with
uv-coordinates

m Many effects possible:
m Flowing water, conveyor belts, distortions etc.
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Projective Texturing




Projective Texture Mapping

m Want to simulate a beamer

m ... or aflashlight, or a slide projector
m Precursor to shadows

m Interesting mathematics:
2 perspective
projections involved!

m Easy to program!
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Projective Texture Mapping
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Projective Texture Mapping: Vertex Stage

m Map vertices to light frustum
m Option 1: from object space

m Option 2: from eye space

m Projection
(perspective transform)

. O
s e
DI
D

£ Texture

o,
LY
0
.
-
-
..
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Camera

Object space — homogeneous

[ MODEL MATRIX ]

World space — homogeneous
f "|

CAMERA VIEW
MATRIX

M "y

Eve space -- homogeneous
' ™

CAMERA PROJECTION
MATRIX

A A

Clip space — homogeneous

Perspective divide

NDC space -- real

Viewport and depth range

Window space -- real
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Projector

Object space — homogeneous

[ MODEL MATRIX ]

World space — homogeneous
i ™

PROJECTOR VIEW
MATRIX

A A

Projector space -- homogeneous
' ™

PROJECTOR
PROJECTION MATRIX

N A

Projector clip space — homogeneous

[0.1] range mapping

N A

Texture space — homogeneous




Projective Texture Mapping

m OpenGL does not store Modeling Matrix
m No notion of world space!

Modelview

- =~ _ N -
X X

e Camera 0
Ye — view Modeling Yo
Z (look at) matrix Z,

matrix
W o

Camera Space Object Space
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Projective Texture Mapping

m Version 1: transforming object space coordinates

m Disadvantage: need to provide model matrix for

each object in shader!

m Classic OpenGL: even more difficult!

1/2 1/2
S Light Light | Xo
| 12 12 view Modeling| | Y,
r 2 1o (prOJect_lon) (look _at) matrix Z,
matrix matrix
9 W
1
/
Map [-1..1] T
to [0..1]

Vienna University of Technology
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Projective Texture Mapping

m Advantage: matrix works for all objects!

S 1/2 1/2
Light Light
( - /2 1/2 view
r (projection) | | (look at)
12112 matrix matrix
9
L N 14 L JL
N\ /
T
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57

Inverse
eye
view
(look at)
matrix

m Version 2: transforming eye space coordinates




Classic OpenGL TexGen Transform

O = = O

Modelview
= o ~ _
X
Eye o
view Modeling Yo
(look at) matrix Z,
matrix W,
1/2 1/2
Light Light
/2 1/2 frustum view
(projection) | | (look at)
1/2 112 matrix matrix
1 - h— — h— —
/

Automatically
applied by TexGen
(set Modeling
matrix to eyeview)

Inverse Xe
eye

7 Ye
view

(look at) Ze

matrix W

Supply this combined transform to glTexGen

Vienna University of Technology
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Projective Texture Mapping: Rasterization M

m Problem: texture coordinate interpolation

m Texture coordinates are homogeneous!

m Look at perspective correct texturing first!
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Perspective Texture Mapping

m Problem: linear interpolation in rasterization?

ax, + bx, X, X,
objectspace za—+b—= screenspace
interpolation @AW, + bW, W, W,  interpolation

Perspective incorrect interpolation:
Use screen-space a,b to calculate P!

a=>b= 0,5,'61(5’ = (x,yzw,Luv,...)
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Perspective Texture Mapping

m Solution: interpolate (s/w, t/w, 1/w)

m (s/w)/ (1/w) =s etc. at every fragment

OBJECT-AFFINE SPACES SCREEN-AFFINE SPACES
each fragment

texture space o div by 1/w homogeneous texture space

S (u, v) (u/w, viw, 1/w)

object space

world space

\ homogeneous screen space : screen space
(XW, yW, W) = (X,y)

div by w
eachivertex




Projective Texturing

m What about homogeneous texture coords?

m Need to do perspective divide also for projector!
m (s, t,q) 2 (s/q, t/q) for every fragment
m How does OpenGL do that?
m Needs to be perspective correct as well!
m Trick: interpolate (s/w, t/w, r/w, q/w)
m (s/w)/ (g/w) =s/q etc. at every fragment

m Remember: s,t,r,q are equivalent to x,y,z,w in
projector space! = r/q = projector depth!
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Homogeneous Perspective Correct Interpolation M

x,y,z,1,r,g,b,a]

texcoord generation =2 [x,v,z,1, r,g,b,a, s,t,r,q]
Modelviewprojection =2 [x’,v’,z",w,1, r,g,b,a, s,t,r,q]
Project ( /w ) =2

IX'/w, V'/w, 2’ /w, 1/w, r,g,b,a, s/w, t/w, r/w, q/w ]ver
Rasterize and interpolate 2

IX'/w, ¥ /w, 2’ /w, 1/w, r,g,b,a, s/w, t/w, r/w, q/w ]fre
Homogeneous: = texture project (/ q/w) =2

X' /w,y'/w,z’/w,1/w, r,8,b,a, s/q,t/q,r/q,1]

Or non-homogeneous: = standard project (/ 1/w) 2
X' /fw, v /w, 2’ /w, 1/w, r,g,b,a, s,t,r,a] (for normals)




Projective Texture Mapping

m Problem

m reverse projection
m Solutions

m Cull objects

behind projector
m Use clip planes to eliminz behind projector

m Fold the back-projection factor into a 3D attenuation
texture

m Use to fragment program to check g <0
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Projective Texture Mapping

m Problems

m Resolution problems

m Projection behind
shadow casters

- Shadow Mapping!
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Projective Texture Mapping Example

m Example shown in CG Shading Language
m CGis proprietary to NVIDIA
m C-like synthax

m HLSL (DirectX shading language) nearly
the same synthax

m Shading languages have specialized calls
for projective texturing:

m CG/HLSL: tex2Dpro’]
m GLSL: texture2DProj
m They include perspective division
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CG Vertex Program

Input: float4 position,
float3 normal

Output: float4 oPosition,
float4 texCoordProj,
float4 diffuselighting

Uniform: float Kd,
float4x4 modelViewProj,
float3 lightPosition,

floatd4x4 textureMatrix
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CG Vertex Program

oPosition
mul (modelViewProj, position);

texCoordProj =
mul (textureMatrix, position);

float3 N = normalize (normal) ;

float3 L = normalize(lightPosition
— position.xyz) ;
diffuselighting =
Kd * max(dot(N, L),0);
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CG Fragment Program

Input: float4 texCoordProj,
floatd4 diffuselighting

Output: floatd4 color

Uniform:sampler2D projectiveMap

float4d textureColor =
tex2Dproj (projectiveMap,
texCoordProj) ;

color = textureColor *
diffusel.ighting;
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CG vs. Classic OpenGL

m Classic OpenGL:
m Just supply correct matrix to glTexGen

> Projective texturing is easy to program and very
effective method.

> Combinable with shadows
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Projective Shadow in Doom 3
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Texture Compression

m S3TC texture compression (DXTn)

m Represent 4x4 texel block by two 16bit colors (5
red, 6 green, 5 blue)

m Store 2 bits per texel
m Uncompress

DXTn Compressed

Original Texture Texture

Color 00 =| 00

m Create 2 additional e || 0o
Colors between c1 “color#t |[ 00 [ 1
and c2 1l 10

B use 2 bItS to |n d ex Linearly Interpolated - — Explicitly Defined
which color v

m 4:1 or 6:1 compression
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Multipass Rendering




Multipass Rendering

m Recall 80 million triangle scene

m Games are NOT using a =0.5
m at least not yet

m Assume a =32, 1 =1024x768, d=4
m Typical for last generation games
m F=1*d=3,1 MF/frame,
m T=F/a=98304 T/frame
m 60 Hz > ~189 MF/s, ~5,6 MT/s
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Do More!

ighting and texturing

What can we do with this power?
m Render scene more often:

multipass rendering

m Render more complex pixels:

multitexturing

m 2 textures are usually for free
m Render more complex pixels and triangles:

m Hardware underused with standard OpenGL

programmable shading

Vienna University of Technology
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Note

m Conventional OpenGL allows for many effects
using multipass

m Still in use for mobile devices and last
gen consoles

m Modern form: render to texture

m Much more flexible but same principle

m Programmable shading makes things easier
m Specialized calls in shading languages
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Multipass Rendering: Why?

m OpenGL lighting model only
m local
m limited in complexity

m Many effects possible with multiple passes:
m Dynamic environment maps

Dynamic shadow maps

Reflections/mirrors

o
o
m Dynamic impostors
o

(Light maps)
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Multipass Rendering: How?

m Render to auxiliary buffers, use result as texture

m E.g.: environment maps, shadow maps
m Requires pbuffer/fbo-support

m Redraw scene using fragment operations
m E.g.: reflections, mirrors
m Uses depth, stencil, alpha, ... tests

m “Multitexture emulation mode”: redraw
m Uses framebuffer blending
m (light mapping)
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Multipass Rendering: How?

(assume redraw scene...)

m First pass

m Establishes z-buffer (and maybe stencil)
glDepthFunc (GL LEQUAL) ;

m Usually diffuse lighting

m Second pass

m Z-Testing only
glDepthFunc (GL LEQUAL) ;
m Render special effect using (examples):

m Blending
Vienna Universigofg‘e:clhélo yenCilFunchL_EQUAL 4 1 4 1) ; ﬁ




Multipass — Framebuffer Blending M

glEnable (GL BLEND) ;
glBlendEquation (GL FUNC ADD) ;

weighting factors

!

result color=p

Incoming (source)

framebuffer color
fragment color

m Other equations: SUBTRACT, MIN, MAX
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Multipass — Blending - Weights

glBlendFunc (GL SRC ALPHA, GL ONE MINUS SRC ALPHA);

m Example: transparency blendmg (window)
m Weights can be defined almost arbitrarily

m Alpha and color weights can be defined
separately

mGL ONE, GL ZERO, GL DST COLOR,
GL SRC COLOR, GL ONE MINUS xxx
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