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But Before We Start: Shading 

Flat shading 

compute light interaction per polygon 

the whole polygon has the same color 

Gouraud shading 

compute light interaction per vertex 

interpolate the colors 

Phong shading 

interpolate normals per pixel 

Remember: difference between 

Phong Light Model 

Phong Shading 
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But Before We Start: OpenGL Lighting 

Phong light model at each vertex (glLight, …) 

Local model only (no shadows, radiosity, …) 

ambient + diffuse + specular (glMaterial!) 

 

 

 

Fixed function: Gouraud shading 

Note: need to interpolate specular separately! 

Phong shading: calculate Phong model in 
fragment shader 
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Why Texturing? 

Idea: enhance visual appearance of plain surfaces 
by applying fine structured details 
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OpenGL Texture Mapping 

Basis for most real-time rendering effects 

Look and feel of a surface 

Definition: 

A regularly sampled function that is mapped onto 
every fragment of a surface 

Traditionally an image, but… 

Can hold arbitrary information 

Textures become general data structures 

Will be interpreted by fragment programs 

Can be rendered into  important! 
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Types of Textures 

Spatial Layout 

1D, 2D, 3D 

Cube Maps 

Formats (too many), e.g. OpenGL 

LUMINANCE16_ALPHA16: 32bit = 2 x 16 bit bump 
map 

RGBA4: 16bit = 4 x 4 colors 

RGBA_FLOAT32: 128 bit = 4 x 32 bit float 

compressed formats, high dynamic range 
formats, … 
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Texturing: General Approach 
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Texture space (u,v)  Object space (xO,yO,zO) Image Space (xI,yI)  

Parametrization Rendering 

(Projection etc.) 

Texels 



Texture Spaces 
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Object space 

(x,y,z,w) 

Parameter Space 

(s,t,r,q) 

Texture Space 

(u,v) 

Rendering Modeling 

Texture 

projection 

Texture 

function 



Texture Projectors 

Where do texture coordinates come from? 

Online: texture matrix/texcoord generation 

Offline: manually (or by modeling prog) 

   spherical  cylindrical planar natural 
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Texture Projectors 

Where do texture coordinates come from? 

Offline: manual UV coordinates by DCC program 

Note: a modeling Problem!  
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Texture Functions 

How to extend texture beyond the border? 

Border and repeat/clamp modes 

Arbitrary (s,t,…)  [0,1]  [0,255]x[0,255] 

 

 

repeat mirror/repeat   clamp   border 

Vienna University of Technology 13 



Texture Aliasing 

Problem: One pixel in image space covers many texels 
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Texture Aliasing 

Caused by undersampling: texture information is lost 
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Texture space 

Image space 



Texture Anti-Aliasing 

A good pixel value is the weighted mean of the pixel area 
projected into texture space  

 

Eduard Gröller, Stefan Jeschke 16 
Texture space u 
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Texture Anti-Aliasing: MIP Mapping 

MIP Mapping (“Multum In Parvo”) 

Texture size is reduced by factors of 2 
(downsampling = "much info on a small area") 

Simple (4 pixel average) and memory efficient 

Last image is only ONE texel 
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Texture Anti-Aliasing: MIP Mapping 

MIP Mapping Algorithm 

D := ld(max(d1,d2))  

T0 := value from texture D0= trunc (D) 

Use bilinear interpolation 
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d1 

d2 

Bilinear interpolation Trilinear interpolation 

X 

"Mip Map level" 



Texture Anti-Aliasing: MIP Mapping 

Trilinear interpolation: 

T1 := value from texture D1 = D0+1 (bilin.interpolation) 

Pixel value := (D1–D)·T0 + (D–D0)·T1  

Linear interpolation between successive MIP Maps 

Avoids "Mip banding" (but doubles texture lookups) 
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Texture Anti-Aliasing: Mip Mapping  

Other example for bilinear vs. trilinear filtering 
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Texture Anti-Aliasing 

Bilinear reconstruction for texture magnification (D<0) 
("upsampling") 

Weight adjacent texels by distance to pixel position 
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-v 

X 
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+ (1-du)·(1-dv)·T(u,v) 

du 

dv 

(u,v) (u+1,v) 

(u+1,v+1) (u,v+1) 



Anti-Aliasing (Bilinear Filtering Example) 
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Original image 

Nearest neighbor Bilinear filtering 



Anti-Aliasing: Anisotropic Filtering 

Anisotropic Filtering 

View dependent filter kernel 

Implementation: summed area table, "RIP Mapping", 
"footprint assembly" , “sampling” 
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Texture space 



Anti-Aliasing: Anisotropic Filtering 

Example 
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Texture Anti-aliasing 

Everything is done in hardware, nothing much to 
do! 

gluBuild2DMipmaps()generates MIPmaps 

Set parameters in glTexParameter() 
GL_LINEAR_MIPMAP_NEAREST 

GL_TEXTURE_MAG_FILTER 

Anisotropic filtering is an extension: 

GL_EXT_texture_filter_anisotropic 

Number of samples can be varied (4x,8x,16x) 

Vendor specific support and extensions  
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Signal Theory 

Fourier Transform of signal  frequency space 
(„spectrum“) 

Multiplication (mul) in primary space =  
Convolution (conv) in frequency space 

Typical signals and their spectra: 

Box <-> sin(x)/x (=„sinc“) 

Gaussian <-> Gaussian 

Impulse train <-> Impulse train 

Width inverse proportional! 
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CG Signal Pipeline: Overview 

Initial Sampling 

Resampling 

Display 
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CG Signal Pipeline: Initial Sampling 

Input: continuous signal  

Nature or computer generated 

Bandlimiting: remove high frequencies 

conv sinc <-> mul box 

Happens in camera optics, lens of eye, or 
antialiasing (direct convolution, supersampling) 

Sampling: 

mul impulse train <-> conv impulse train 

Leads to replica of spectra! 

Result: image or texture 
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CG Signal Pipeline: Resampling 

Input: Samples = discrete signal (usually texture) 

Reconstruction: 

conv sinc <-> mul box 

„Removes“ replica of spectrum in sampled repr. 

Bandlimiting: 

Only required if new sampling frequency is lower! 

Typically through mipmapping 

Sampling 

Result: another texture or final image (=frame 
buffer) 
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CG Signal Pipeline: Display 

Input: Samples (from frame buffer) 

Reconstruction 

Using display technology (e.g. CRT: Gaussian!) 

Result: continuous signal (going to eye) 
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CG Signal Pipeline: Observations 

Practice: substitute sinc by Gaussian 

sinc has negative values 

Gaussian can be cut off gracefully 

„Reconstruction“ is really an interpolation! 

Reconstruction ≠ Antialiasing! 

Aliasing: overlap of signal replica in sampling 

Bandlimiting = Antialiasing 

Magnification  reconstruction only 

Minification  bandlimiting + reconstruction 

 
Vienna University of Technology 31 



CG Signal Pipeline: Full Scene Antialiasing 

Supersamling 

Multisampling (MSAA): combines  

Supersampling (for edges) 

Texture filtering (for textures) 

Only one shader evaluation per final pixel 

Morphological Antialiasing (FXAA, SMAA, …): 

Postprocess 

Analyzes image, recovers edges, antialiases them 

 

Vienna University of Technology 32 



Multitexturing 

Apply multiple textures in one pass 

Integral part of programmable shading 

e.g. diffuse texture map + gloss map 

e.g. diffuse texture map + light map 

Performance issues 

How many textures are free? 

How many are available 
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Multitexture – How? 

Simple(!) texture environment example: 

 

 

 

 

 

 

 

Programmable shading makes this easier! 
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glActiveTexture(GL_TEXTURE1); 

glTexEnvi(GL_TEXTURE_ENV, …) 

… GL_TEXTURE_ENV_MODE, GL_COMBINE); 

… GL_COMBINE_RGB, GL_MODULATE); 

… GL_SOURCE1_RGB, GL_TEXTURE); 

… GL_OPERAND1_RGB, GL_SRC_COLOR); 

… GL_SOURCE2_RGB, GL_PREVIOUS); 

… GL_OPERAND2_RGB, GL_SRC_COLOR); 

C = CT1 · CT0 



Example: Light Mapping 

Used in virtually every commercial game 

Precalculate diffuse lighting on static objects 

Only low resolution necessary 

Diffuse lighting is view independent! 

Advantages: 

No runtime lighting necessary  

VERY fast! 

Can take global effects (shadows, color bleeds) 
into account 
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Light Mapping 

 

 

 

 

 

 

 

 Original LM texels   Bilinear Filtering 
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Light Mapping 

 

 

 

 

 

 

 

  Original scene      Light-mapped 
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Example: Light Mapping 

Precomputation based on non-realtime methods 

Radiosity 

Raytracing 

Monte Carlo Integration 

Pathtracing 

Photonmapping 
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Light Mapping 

 

 

 

 

 

 

 

Lightmap           mapped 
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Light Mapping 

 

 

 

 

 

 

 

  Original scene      Light-mapped 
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Ambient Occlusion 

Special case of light mapping 

Cos-weighted visibility to environment modulates 
intensity: 

 

 

 

 

Darker where more occluded 

„Soft shadow due to diffuse sky“ 

Option: “per object” lightmap 
Allows to move object 
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Ambient Occlusion 
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Model/Texture: Rendermonkey 



Light Mapping Issues 

Map generation: 

Use single map for group of coplanar polys 
Lightmap UV coordinates need to be in (0..1)x(0..1) 

Map application: 

Premultiply textures by light maps 

Why is this not appealing? 

Multipass with framebuffer blend 

Problems with specular 

Multitexture 

Fast, flexible 
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Light Mapping Issues 

Why premultiplication is bad… 

 

 

 

 

 

 

 

 use tileable surface textures and low resolution 
lightmaps  
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vs. 

+ 

Full Size Texture 

(with Lightmap) 
Tiled Surface Texture  

plus Lightmap 



Light Mapping/AO Toolset 

DCC programs (Blender, Maya…) 

Game Engines (Irrlicht) 

Light Map Maker (free) 

 

Ambient Occlusion: 

xNormal 
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Texture Coordinates 

Specified manually (glMultiTexCoord()) 

Using classical OpenGL texture coordinate 
generation 

Linear: from object or eye space vertex coords 

Special texturing modes (env-maps) 

Can be further modified with texture matrix 
E.g., to add texture animation 

Can use 3rd or 4th texture coordinate for 
projective texturing! 

Shader allows complex texture lookups! 

Vienna University of Technology 46 



Texture Coordinate Generation 

Specify a “plane” (i.e., a 4D-vector) for each 
coordinate (s,t,r,q) 

Example: s = p1 x + p2 y + p3 z + p4 w 

 

 

 

 

Think of this as a matrix T with plane parameters as 
row vectors 
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GLfloat Splane[4] = { p1, p2, p3, p4 }; 

glTexGenfv(GL_S, GL_EYE_PLANE, Splane); 

glEnable(GL_TEXTURE_GEN_S); 



Texture Coordinate Generation 

Object-linear: 
 
 
 
Eye-linear:  
Te = T · M

-1 

 (M…Modelview matrix at  
time of specification!) 
Effect: uses coordinate space  
at time of specification! 

Eye: M=identity 
World: M=view-matrix 
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Texture Animation 

Classic OpenGL 

Can specify an arbitrary 4x4 Matrix, 
each frame! 

glMatrixMode(GL_TEXTURE);  

There is also a texture matrix stack! 

Shaders allow arbitrary dynamic calculations with 
uv-coordinates 

Many effects possible: 

Flowing water, conveyor belts, distortions etc. 
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Projective Texturing 



Projective Texture Mapping 

Want to simulate a beamer 

… or a flashlight, or a slide projector 

Precursor to shadows 

Interesting mathematics:  
2 perspective  
projections involved! 

Easy to program! 

Vienna University of Technology 51 



Projective Texture Mapping 
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Projective Texture Mapping: Vertex Stage 

Map vertices to light frustum 

Option 1: from object space 

Option 2: from eye space 

Projection  
(perspective transform) 
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Spaces 

 

Vienna University of Technology 54 



Projective Texture Mapping 

OpenGL does not store Modeling Matrix 

No notion of world space! 
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Projective Texture Mapping 

Version 1: transforming object space coordinates 

Disadvantage: need to provide model matrix for 
each object in shader! 

Classic OpenGL: even more difficult! 
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Projective Texture Mapping 

Version 2: transforming eye space coordinates 

Advantage: matrix works for all objects! 
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Classic OpenGL TexGen Transform 
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Projective Texture Mapping: Rasterization 

Problem: texture coordinate interpolation 

Texture coordinates are homogeneous! 

Look at perspective correct texturing first! 
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Perspective Texture Mapping 

Problem: linear interpolation in rasterization? 
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Perspective Texture Mapping 

Solution: interpolate (s/w, t/w, 1/w) 

(s/w) / (1/w) = s etc. at every fragment 
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each fragment 



Projective Texturing 

What about homogeneous texture coords? 

Need to do perspective divide also for projector! 

(s, t, q)  (s/q, t/q) for every fragment 

How does OpenGL do that? 

Needs to be perspective correct as well! 

Trick: interpolate (s/w, t/w, r/w, q/w) 

(s/w) / (q/w) = s/q etc. at every fragment 

Remember: s,t,r,q are equivalent to x,y,z,w in 
projector space!  r/q = projector depth! 
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Homogeneous Perspective Correct Interpolation 

[x,y,z,1,r,g,b,a] 

texcoord generation  [x,y,z,1, r,g,b,a, s,t,r,q]  

Modelviewprojection  [x’,y’,z’,w,1, r,g,b,a, s,t,r,q] 

Project ( /w )  

 [x’/w, y’/w, z’/w, 1/w, r,g,b,a, s/w, t/w, r/w, q/w ]vert 

Rasterize and interpolate  
[x’/w, y’/w, z’/w, 1/w, r,g,b,a, s/w, t/w, r/w, q/w ]frag  

Homogeneous:  texture project (/ q/w)  
[x’/w,y’/w,z’/w,1/w, r,g,b,a, s/q,t/q,r/q,1] 

Or non-homogeneous:  standard project (/ 1/w)  
[x’/w, y’/w, z’/w, 1/w, r,g,b,a, s,t,r,q] (for normals) 
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Projective Texture Mapping 

Problem 

reverse projection 

Solutions 

Cull objects 
behind projector 

Use clip planes to eliminate objects behind projector 

Fold the back-projection factor into a 3D attenuation 
texture 

Use to fragment program to check q < 0 
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Projective Texture Mapping 

Problems 

Resolution problems 

Projection behind 
shadow casters 

 Shadow Mapping! 
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Projective Texture Mapping Example 

Example shown in CG Shading Language 

CG is proprietary to NVIDIA 

C-like synthax 

HLSL (DirectX shading language) nearly 
the same synthax 

Shading languages have specialized calls 
for projective texturing: 

CG/HLSL: tex2Dproj 

GLSL: texture2DProj 

They include perspective division 
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CG Vertex Program 

Input:  float4 position,  

      float3 normal 

Output: float4 oPosition,  

       float4 texCoordProj,  

        float4 diffuseLighting 

Uniform:float Kd,  

   float4x4 modelViewProj, 

    float3 lightPosition,  

   float4x4 textureMatrix 
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CG Vertex Program 

oPosition =  

  mul(modelViewProj, position); 

texCoordProj = 

 mul(textureMatrix, position); 

float3 N = normalize(normal); 

float3 L = normalize(lightPosition 

   – position.xyz); 

diffuseLighting =  

  Kd * max(dot(N, L),0); 
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CG Fragment  Program 

Input:  float4 texCoordProj,  

   float4 diffuseLighting 

Output: float4 color 

Uniform:sampler2D projectiveMap 

float4 textureColor = 

tex2Dproj(projectiveMap,   

   texCoordProj); 

color = textureColor *    

   diffuseLighting; 
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CG vs. Classic OpenGL 

Classic OpenGL: 

Just supply correct matrix to glTexGen 

 Projective texturing is easy to program and very 
effective method. 

 Combinable with shadows 
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Projective Shadow in Doom 3 
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Texture Compression 

S3TC texture compression (DXTn) 

Represent 4x4 texel block by two 16bit colors (5 
red, 6 green, 5 blue) 

Store 2 bits per texel 

Uncompress 

Create 2 additional 
Colors between c1  
and c2 

use 2 bits to index 
which color 

4:1 or 6:1 compression 
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Multipass Rendering 



Multipass Rendering 

Recall 80 million triangle scene 

Games are NOT using a = 0.5 

at least not yet 

Assume a = 32, I = 1024x768, d=4 

Typical for last generation games 

F = I * d = 3,1 MF/frame,  

T = F / a = 98304 T/frame 

60 Hz  ~189 MF/s, ~5,6 MT/s 
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Do More! 

Hardware underused with standard OpenGL 
lighting and texturing 

What can we do with this power? 

Render scene more often:  
multipass rendering 

Render more complex pixels: 
multitexturing 

2 textures are usually for free 

Render more complex pixels and triangles: 
programmable shading 
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Note 

Conventional OpenGL allows for many effects 
using multipass 

Still in use for mobile devices and last 
gen consoles 

Modern form: render to texture 

Much more flexible but same principle 

 

Programmable shading makes things easier 

Specialized calls in shading languages 
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Multipass Rendering: Why? 

OpenGL lighting model only 

local 

limited in complexity 

Many effects possible with multiple passes: 

Dynamic environment maps 

Dynamic shadow maps 

Reflections/mirrors 

Dynamic impostors 

(Light maps) 
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Multipass Rendering: How? 

Render to auxiliary buffers, use result as texture 

E.g.: environment maps, shadow maps 

Requires pbuffer/fbo-support 

Redraw scene using fragment operations  

E.g.: reflections, mirrors 

Uses depth, stencil, alpha, … tests 

“Multitexture emulation mode”: redraw 

Uses framebuffer blending 

(light mapping) 

Vienna University of Technology 78 



Multipass Rendering: How? 

(assume redraw scene…) 

First pass 

Establishes z-buffer (and maybe stencil) 
glDepthFunc(GL_LEQUAL); 

Usually diffuse lighting 

Second pass 

Z-Testing only 
glDepthFunc(GL_LEQUAL); 

Render special effect using (examples): 

Blending 

glStencilFunc(GL_EQUAL, 1, 1); 
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Multipass – Framebuffer Blending 

 

 

 

 

 

 

 

 

Other equations: SUBTRACT, MIN, MAX 
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C = Cs S + Cd D 

incoming (source) 

fragment color 
framebuffer color 

result color 

weighting factors 

glEnable(GL_BLEND); 

glBlendEquation(GL_FUNC_ADD); 



Multipass – Blending - Weights 

 

 

 

Example: transparency blending (window) 

Weights can be defined almost arbitrarily 

Alpha and color weights can be defined 
separately 

GL_ONE, GL_ZERO, GL_DST_COLOR, 

GL_SRC_COLOR, GL_ONE_MINUS_xxx 
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C = Cs ·  + Cd · (1- ) 

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); 


