
Real-Time Rendering

Graphics Programming

Graphics Libraries (APIs)

Give access to graphics hardware…

Declarative (What, not How)

Describe the scene (e.g., scene graphs)

SGI Open Inventor, SGI Performer, Renderman,
OpenSceneGraph…

Imperative (How, not What)

Sequence of drawing commands

OpenGL, DirectX (Direct3D), Postscript

More direct control

Vienna University of Technology 2

Graphics Libraries (APIs)

Using a scene graph API…

Vienna University of Technology 3

Windows/Linux OpenGL

Hardware

Scenegraph

Application

Graphics Libraries (APIs)

Using an immediate-mode API…

Vienna University of Technology 4

Windows/Linux OpenGL

Hardware

GLUT

Application

The OpenGL Graphics System

Web site: www.opengl.org

OpenGL trademark owned by SGI

More than 70 licensees

OpenGL was controlled by the “ARB”

Architecture Review Board

Compaq, IBM, Intel, Microsoft, SGI, Evans &
Sutherland, HP, Sun, NVidia, ATI, Apple

Meeting notes on the Web

follow ARB decisions, discussions, …

Vienna University of Technology 6

Khronos Group

Foundation: 2000
Supersedes ARB
~100 member companies
Many APIs

OpenGL (since 2006)
OpenGL ES
OpenVG
OpenCL
WebGL
Collada
 Vulkan
…

Vienna University of Technology 7

Short History of OpenGL

1982 Silicon Graphics (SGI) incorporated
1983 IRIS GL on IRIS 1000 terminal
 (the predecessor to OpenGL)
1991 OpenGL ARB created
1992 OpenGL 1.0 (June 30)
1995 OpenGL 1.1
1996 OpenGL specification made public
1998 OpenGL 1.2
2000 OpenGL goes open source
2001 OpenGL 1.3
2002 OpenGL 1.4
2003 OpenGL 1.5
2004 OpenGL 2.0 (Shaders)
2008 OpenGL 3.0 (Depreciation model)
2008 OpenGL 3.0 (Depreciation model)
2009 OpenGL 3.2 (Geometry shaders)
2010 OpenGL 4.0 (Tesselation)

 Vienna University of Technology 8

A Short OpenGL Freshup

All primitives made up of vertices…

Vienna University of Technology 9

GL_QUAD_STRIP GL_QUAD_STRIP GL_TRIANGLE_FAN GL_TRIANGLE_FAN

GL_POINTS GL_POINTS

GL_LINES GL_LINES

GL_POLYGON GL_POLYGON
GL_LINE_LOOP GL_LINE_LOOP GL_LINE_STRIP GL_LINE_STRIP

GL_TRIANGLES GL_TRIANGLES

GL_TRIANGLE_STRIP GL_TRIANGLE_STRIP

GL_QUADS GL_QUADS

OpenGL Programming Model

OpenGL is a state machine

All commands change state

Fixed function: only glVertex causes action

This is still the “model”

Superseded by new “macro” commands
(glDrawBuffers, glDrawElements, …)

Vienna University of Technology 10

Vienna University of Technology 11

OpenGL Design Goals

Platform independent (unlike DirectX)

Window-system dependent code separate (GLX, WGL)

Implementations on Windows, Linux, MacOS, Be, OS/2,
Unix, …

Language independent (bindings for C, Java, Fortran, …)

Consistency (unlike DirectX)

Tightly written specification

Conformance tests and required verification

Not too tight: not pixel exact

Invariance across passes (for correct multipass)

Vienna University of Technology 12

OpenGL Design Goals

Complete implementations (unlike DirectX)

Missing hardware features emulated in software

Silent error recovery

Clean interface (unlike DirectX)

State machine

Most states are orthogonal (i.e., don’t influence
each other, no side effects!)

Extensibility (unlike DirectX)

Favors innovation

New HW features first available on OpenGL!

Vienna University of Technology 13

More Goals

High quality

Intuitive usability (beauty counts)

Good documentation (Programming Guide)

Long life…

Vienna University of Technology 14

OpenGL Problems

Extensibility

Different extensions for different GPUs

Hell for production code (games)

Design by committee

Unified extension interfaces take long time

Very slow to adopt non-GPU specific features (e.g.,
offscreen buffers)

Non-existent toolset

Shading debuggers (but: gDebugger)

Performance tools (but: NVIDIA Parallel NSight)

Mesh tools (already included in DirectX)

Mediocre driver support
Vienna University of Technology 15

OpenGL Extensions

Khronos maintains central registry

Carefully documented

Takes into account previous extensions

New OpenGL version could be implemented by
applying all extensions

A bit difficult to read

Read overview, then “Additions to…”

Very stable process

Extensions are refined and improved…

Vienna University of Technology 16

OpenGL Extension Categories

Proprietary: suffixed with vendor

e.g., SGIS_texture_lod, NV_fragment_program

EXT suffix

Implemented by at least 2 vendors (usually NV,AMD)

e.g. EXT_blend_func_separate

ARB suffix

Specification controlled by ARB

ARB_multitexture

1.x: no suffix

Required feature for version 1.x

Vienna University of Technology 17

Vienna University of Technology 18

Vienna University of Technology 19

Vienna University of Technology 20

Vienna University of Technology 21

Using Extensions

Get glext.h from www.opengl.org

Check for extension availability

Acquire function pointer(s) (only Win32)

Easier: google “opengl loading library”

Vienna University of Technology 22

http://www.opengl.org/
http://www.opengl.org/

OpenGL 2.0

Main novelty: shading language GLSL

Vertex and fragment shaders

Replace fixed functionality

Shader: high-level language (C-like)

OpenGL driver: compiler and linker for shaders

Vertex-, texture coordinates etc.:
abstract input values to shader function

Arbitrary calculations possible

Requires DX9 (GeforceFX/6) cards

Vienna University of Technology 23

OpenGL 3.0

Not much new

Vertex Array Objects (encapsulate VBO state)

Framebuffer objects (offscreen rendering)

sRGB framebuffers

Texture arrays

Transform feedback

Conditional rendering

Extensions: geometry shaders, instancing, ...

Depreciation mechanism!

Vienna University of Technology 24

OpenGL 3.2

Geometry shaders

Synchronization primitives

Core profile/compatibility profile

Vienna University of Technology 25

OpenGL 4.0/3.3

Tessellation

Timer queries

Double precision floating point

Etc.

OpenGL 3.3: for compatibility with older
hardware

Vienna University of Technology 26

OpenGL 4+

OpenGL 4.1: minor stuff (OpenGL ES 2.0
compatibility)

OpenGL 4.2: minor stuff (atomic counters, …)

OpenGL 4.3: Compute Shaders, shader buffers,
debugging, OpenGL ES 3.0 compatibility, texture
views

OpenGL 4.4: minor stuff (bindless textures,
memory transfer optimizations, …)

OpenGL 4.5: even more minor (OpenGL ES 3.1)

Vienna University of Technology 27

OpenGL ES

For embedded systems

Reduced instruction set

Developers love it 

OpenGL 4.3 is backwards compatible with
OpenGL ES 3.0!

Vienna University of Technology 28

Vulkan

Designated OpenGL successor

Adapted from AMD Mantle

Binary intermediate format for shaders (SPIR)

Client-controlled command buffers
VK_CMD_BUFFER_BEGIN_INFO info = { ... };

vkBeginCommandBuffer(cmdBuf, &info);

vkCmdDoThisThing(cmdBuf, ...);

vkCmdDoSomeOtherThing(cmdBuf, ...);

vkEndCommandBuffer(cmdBuf);

Render passes
VK_RENDER_PASS_CREATE_INFO info = { ... };

VK_RENDER_PASS renderPass;

vkCreateRenderPass(device, &info, &renderPass);

Vienna University of Technology 29

