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Walking down the graphics pipeline 

Application Geometry Rasterizer 



What for? 

Understanding the rendering pipeline is the key to 
real-time rendering! 

 

 Insights into how things work 

Understanding algorithms 

Insights into how fast things work 

Performance 
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Simple Graphics Pipeline 

Often found in text books 

Will take a more detailed look into OpenGL 
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Application Geometry Rasterizer 

Display 



Nowadays, everything part 
of the pipeline is hardware 
accelerated 

 

 

Fragment: “pixel”, but with 
additional info (alpha, 
depth, stencil, …) 

Graphics Pipeline (pre DX10, OpenGL 2 ) 
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Fixed Function Pipeline – Dataflow View 
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DirectX10 /OpenGL 3.2 Evolution 
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OpenGL 3.0 

OpenGL 2.x is not as capable as DirectX 10 

But: New features are vendor specific extensions 
(geometry shaders, streams…) 

GLSL a little more restrictive than HLSL (SM 3.0) 

OpenGL 3.0 did not clean up this mess! 
 OpenGL 2.1 + extensions 

 Geometry shaders are only an extension 

 New: depreciation mechanism 

OpenGL 4.x 
 New extensions 

 OpenGL ES compatibility! 

Vienna University of Technology 8 



DirectX 11/OpenGL 4.0 Evolution 
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Not the final place in the pipeline!!! 



DirectX 11 

Tesselation 

At unexpected position! 

Compute Shaders 

Multithreading 

To reduce state change overhead 

Dynamic shader linking 

HDR texture compression 

Many other features...  
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DirectX 11 Pipeline 
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DirectX 12/Vulkan/AMD Mantle/Apple Metal 

Reduce driver overhad 

Indirect drawing 

Pipeline state objects 

Command lists/bundles 

Partly possible already in OpenGL 4.3+ 

Other features 

Conservative rasterization (for culling) 

New blend modes 

Order-independent transparency 
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Application 

Generate database (Scene description) 

Usually only once 

Load from disk  

Build acceleration structures (hierarchy, …) 

Simulation (Animation, AI, Physics) 

Input event handlers 

Modify data structures 

Database traversal 

Shaders (vertex,geometry,fragment) 
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Driver 

Maintain graphics API state 

Command interpretation/translation 

Host commands  GPU commands 

Handle data transfer 

Memory management 

Emulation of missing hardware features 

 

Usually huge overhead! 

Significantly reduced in DX10 
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Geometry Stage 
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Command 

Vertex Processing 

Clipping 

Perspective Division 

Primitive Assembly 

Culling 

Tesselation 

Geometry Shading 



Command 

Command buffering (!) 

Command interpretation 

Unpack and perform 
format conversion (“Input 
Assembler”) 
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glLoadIdentity( ); 

glMultMatrix( T ); 

glBegin( GL_TRIANGLE_STRIP ); 

glColor3f ( 0.0, 0.5, 0.0 ); 

glVertex3f( 0.0, 0.0, 0.0 ); 

glColor3f ( 0.5, 0.0, 0.0 ); 

glVertex3f( 1.0, 0.0, 0.0 ); 

glColor3f ( 0.0, 0.5, 0.0 ); 

glVertex3f( 0.0, 1.0, 0.0 ); 

glColor3f ( 0.5, 0.0, 0.0 ); 

glVertex3f( 1.0, 1.0, 0.0 ); 

glEnd( ); 

Color

Transformation matrixT



Vertex Processing 

Transformation 
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Vertex Processing 

Fixed function pipeline: 

User has to provide matrices, the rest happens 
automatically 

Programmable pipeline: 

User has to provide matrices/other data to shader 

Shader Code transforms vertex explicitly 

We can do whatever we want with the vertex! 

Usually a gl_ModelViewProjectionMatrix is provided 

In GLSL-Shader : gl_Position = ftransform(); 
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Vertex Processing 

Lighting 

Texture coordinate generation and/or 
transformation 

Vertex shading for special effects 
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T

Object-space triangles Screen-space lit triangles



Tesselation 

If just triangles, nothing needs to be done, 
otherwise: 

Evaluation of polynomials for curved surfaces 

 Create vertices (tesselation) 

DirectX11 specifies this in hardware! 

3 new shader stages!!! 

Still not trivial (special algorithms required) 
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DirectX11 Tesselation 
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control shader evaluation shader 



Tesselation Example 
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Optimally tesslated! 



Geometry Shader 

Calculations on a primitive (triangle) 

Access to neighbor triangles 

Limited output (1024 32-bit values) 

 No general tesselation! 

Applications: 
Render to cubemap 

Shadow volume generation 

Triangle extension for ray tracing 

Extrusion operations (fur rendering) 
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Rest of Geometry Stage 

Primitive assembly 

Geometry shader 

Clipping (in homogeneous coordinates) 

Perspective division, viewport transform 

Culling 
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Rasterization Stage 
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Rasterization 
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Rasterization 

Setup (per-triangle) 

Sampling (triangle = {fragments}) 

Interpolation (interpolate colors and coordinates) 
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Screen-space triangles Fragments



Rasterization 

Sampling inclusion determination 

In tile order improves cache coherency 

Tile sizes vendor/generation  
specific 

Old graphics cards: 16x64 

New: 4x4 

 Smaller tile size favors 
conditionals in shaders 

 All tile fragments calculated in parallel 
on modern hardware 
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Rasterization – Coordinates 

Fragments represent “future” pixels 
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0.0 1.0 2.0 3.0
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x window coordinate

y window
coordinate

Pixel
(2,1)

Lower left corner
of the window

Pixel center at 

(2.5, 1.5)! 



Rasterization – Rules 

Separate rule for 
each primitive 

Non-ambiguous! 

Polygons: 

Pixel center 
contained in 
polygon 

On-edge pixels: 
only one is 
rasterized 
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Texture 

Texture “transformation” and projection 

E.g., projective textures 

Texture address calculation (programmable in 
shader) 

Texture filtering 
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Fragments Texture Fragments



Fragment 

Texture operations (combinations, modulations, 
animations etc.) 

Vienna University of Technology 31 

Fragments

Textured Fragments

Texture Fragments



Raster Tests 

Ownership 

Is pixel obscured by other window? 

Scissor test 

Only render to scissor rectangle 

Depth test 

Test according to z-buffer 

Alpha test 

Test according to alpha-value 

Stencil test 

Test according to stencil  
buffer 
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Textured Fragments Framebuffer Pixels



Raster Operations 

Blending or compositing 

Dithering  

Logical operations 
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Textured Fragments Framebuffer Pixels



Raster Operations 

Scissor
Test

Alpha
Test

Stencil
Test

Depth
Test

Blending
(RGBA only)

Dithering Logicop Frame
Buffer

Stencil BufferDepth Buffer

Fragment
and 

associated
data

Pixel
Ownership

Test
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After fragment color calculation (“Output 
Merger”) 



Display 

Gamma correction 

Digital to analog conversion if necessary 
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Framebuffer Pixels Light



Display 

Frame buffer pixel format:  
RGBA vs. index (obsolete) 

Bits: 16, 32, 128 bit floating point, … 

Double buffered vs. single buffered 

Quad-buffered for stereo 

Overlays (extra bit planes) for GUI 

Auxiliary buffers: alpha, stencil 
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Functionality vs. Frequency 

Geometry processing = per-vertex 

Transformation and Lighting (T&L) 

Historically floating point, complex operations 

Today: fully programmable flow control, texture 
lookup 

20-1500 million vertices per second 

Fragment processing = per-fragment 

Blending and texture combination 

Historically fixed point and limited operations 

Up to 50 billion fragments (“Gigatexel”/sec) 

Floating point, programmable complex operations 
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Application

Geometry

Rasterization

Texture

Fragment

Display

Command

Assume typical non-trivial fixed-
function rendering task 

1 light, texture coordinates, 
projective texture mapping 

7 interpolants (z,r,g,b,s,t,q) 

Trilinear filtering, texture-, color 
blending, depth buffering 

Rough estimate: 

Computational Requirements 
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ADD CMP MUL DIV 

Vertex 102 30 108 5 

Fragment 66 9 70 1 



Communication Requirements 

Vertex size: 

Position x,y,z  

Normal x,y,z 

Texture coordinate s,t  

 8  4 = 32 bytes 

Texture: 

Color r,g,b,a, 4 bytes 

Display:  

Color r,g,b, 3 bytes 

Fragment size (in frame 
buffer): 

Color r,g,b,a 

Depth z (assume 32 bit) 

 8 bytes, but goes both 
ways (because of 
blending!) 
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Communication Requirements 
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Vertex 5 Gops 

Fragment 150 Gops 

Framebuffer

0.36 GB/s

1000 Mpix/s

20 Mvert/s

120 Mpix/s
16 GB/s

4 GB/s

0.640 GB/s

Texture Memory
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