
Real-Time Rendering
(Echtzeitgraphik)

Michael Wimmer
wimmer@cg.tuwien.ac.at

Walking down the graphics pipeline

Application Geometry Rasterizer

What for?

Understanding the rendering pipeline is the key to
real-time rendering!

 Insights into how things work

Understanding algorithms

Insights into how fast things work

Performance

Vienna University of Technology 3

Simple Graphics Pipeline

Often found in text books

Will take a more detailed look into OpenGL

Vienna University of Technology 4

Application Geometry Rasterizer

Display

Nowadays, everything part
of the pipeline is hardware
accelerated

Fragment: “pixel”, but with
additional info (alpha,
depth, stencil, …)

Graphics Pipeline (pre DX10, OpenGL 2)

Vienna University of Technology 5

G
e
o
m

e
tr

y

R
a
s
te

ri
z
e
r

Driver

Geometry

Rasterization

Texture

Fragment

Display

Command

Application

C
P

U

Fixed Function Pipeline – Dataflow View

Vienna University of Technology 6

on-chip cache memory

video memory

system

memory

rasterization

CPU

vertex

shading

(T&L)

triangle setup

fragment

shading

and

raster

operations

textures

frame buffer

geometry

commands

pre-TnL

cache

post-TnL cache

texture

cache

DirectX10 /OpenGL 3.2 Evolution

Vienna University of Technology 7

Vertex

Shader

Geometry

Shader

Pixel

Shader

Input

Assembler

Setup/

Rasterization

Output

Merger

Stream

Out

Memory

Vertex

Buffer

Texture

Depth

Texture

Texture

Color

Index
Buffer

Buffer G
e
o
m

e
tr

y

R
a
s
te

ri
z
e
r

Driver

Geometry

Rasterization

Texture

Fragment

Display

Command

Application

C
P

U

OpenGL 3.0

OpenGL 2.x is not as capable as DirectX 10

But: New features are vendor specific extensions
(geometry shaders, streams…)

GLSL a little more restrictive than HLSL (SM 3.0)

OpenGL 3.0 did not clean up this mess!
 OpenGL 2.1 + extensions

 Geometry shaders are only an extension

 New: depreciation mechanism

OpenGL 4.x
 New extensions

 OpenGL ES compatibility!

Vienna University of Technology 8

DirectX 11/OpenGL 4.0 Evolution

Vienna University of Technology 9

Vertex

Shader

Setup

Rasterizer

Output

Merger

Pixel

Shader
Geometry

Shader

Texture Texture
Render

Target

Depth

Stencil
Texture

Stream

Buffer

Stream
out

Memory

memory

programmable

fixed

Sampler Sampler Sampler

Constant Constant Constant

Vertex

Buffer

Input

Assembler

Index

Buffer

Tessellator
Control
Point

Shader

Texture

Sampler

Constant

Not the final place in the pipeline!!!

DirectX 11

Tesselation

At unexpected position!

Compute Shaders

Multithreading

To reduce state change overhead

Dynamic shader linking

HDR texture compression

Many other features...

Vienna University of Technology 10

DirectX 11 Pipeline

Vienna University of Technology 11

DirectX 12/Vulkan/AMD Mantle/Apple Metal

Reduce driver overhad

Indirect drawing

Pipeline state objects

Command lists/bundles

Partly possible already in OpenGL 4.3+

Other features

Conservative rasterization (for culling)

New blend modes

Order-independent transparency

Vienna University of Technology 12

Application

Generate database (Scene description)

Usually only once

Load from disk

Build acceleration structures (hierarchy, …)

Simulation (Animation, AI, Physics)

Input event handlers

Modify data structures

Database traversal

Shaders (vertex,geometry,fragment)

Vienna University of Technology 13

Driver

Maintain graphics API state

Command interpretation/translation

Host commands  GPU commands

Handle data transfer

Memory management

Emulation of missing hardware features

Usually huge overhead!

Significantly reduced in DX10

Vienna University of Technology 14

Geometry Stage

Vienna University of Technology 15

Command

Vertex Processing

Clipping

Perspective Division

Primitive Assembly

Culling

Tesselation

Geometry Shading

Command

Command buffering (!)

Command interpretation

Unpack and perform
format conversion (“Input
Assembler”)

Vienna University of Technology 16

glLoadIdentity();

glMultMatrix(T);

glBegin(GL_TRIANGLE_STRIP);

glColor3f (0.0, 0.5, 0.0);

glVertex3f(0.0, 0.0, 0.0);

glColor3f (0.5, 0.0, 0.0);

glVertex3f(1.0, 0.0, 0.0);

glColor3f (0.0, 0.5, 0.0);

glVertex3f(0.0, 1.0, 0.0);

glColor3f (0.5, 0.0, 0.0);

glVertex3f(1.0, 1.0, 0.0);

glEnd();

Color

Transformation matrixT

Vertex Processing

Transformation

Vienna University of Technology 17

Vertex Processing

v
e
r
t
e
x

Modelview

Matrix

Projection

Matrix

Perspective

Division
Viewport

Transform

Modelview

Modelview

Projection

l
l
l

object eye clip normalized

device
window

Vertex Processing

Fixed function pipeline:

User has to provide matrices, the rest happens
automatically

Programmable pipeline:

User has to provide matrices/other data to shader

Shader Code transforms vertex explicitly

We can do whatever we want with the vertex!

Usually a gl_ModelViewProjectionMatrix is provided

In GLSL-Shader : gl_Position = ftransform();

Vienna University of Technology 18

Vertex Processing

Lighting

Texture coordinate generation and/or
transformation

Vertex shading for special effects

Vienna University of Technology 19

T

Object-space triangles Screen-space lit triangles

Tesselation

If just triangles, nothing needs to be done,
otherwise:

Evaluation of polynomials for curved surfaces

 Create vertices (tesselation)

DirectX11 specifies this in hardware!

3 new shader stages!!!

Still not trivial (special algorithms required)

Vienna University of Technology 20

DirectX11 Tesselation

Vienna University of Technology 21

control shader evaluation shader

Tesselation Example

Vienna University of Technology 22

Optimally tesslated!

Geometry Shader

Calculations on a primitive (triangle)

Access to neighbor triangles

Limited output (1024 32-bit values)

 No general tesselation!

Applications:
Render to cubemap

Shadow volume generation

Triangle extension for ray tracing

Extrusion operations (fur rendering)

Vienna University of Technology 23

Rest of Geometry Stage

Primitive assembly

Geometry shader

Clipping (in homogeneous coordinates)

Perspective division, viewport transform

Culling

Vienna University of Technology 24

Rasterization Stage

Vienna University of Technology 25

Rasterization

Fragment

Processing

Raster Operations

Texture

Processing

Triangle Setup

Rasterization

Setup (per-triangle)

Sampling (triangle = {fragments})

Interpolation (interpolate colors and coordinates)

Vienna University of Technology 26

Screen-space triangles Fragments

Rasterization

Sampling inclusion determination

In tile order improves cache coherency

Tile sizes vendor/generation
specific

Old graphics cards: 16x64

New: 4x4

 Smaller tile size favors
conditionals in shaders

 All tile fragments calculated in parallel
on modern hardware

Vienna University of Technology 27

Rasterization – Coordinates

Fragments represent “future” pixels

Vienna University of Technology 28

0.0 1.0 2.0 3.0

0.0

1.0

2.0

3.0

x window coordinate

y window
coordinate

Pixel
(2,1)

Lower left corner
of the window

Pixel center at

(2.5, 1.5)!

Rasterization – Rules

Separate rule for
each primitive

Non-ambiguous!

Polygons:

Pixel center
contained in
polygon

On-edge pixels:
only one is
rasterized

Vienna University of Technology 29

Texture

Texture “transformation” and projection

E.g., projective textures

Texture address calculation (programmable in
shader)

Texture filtering

Vienna University of Technology 30

Fragments Texture Fragments

Fragment

Texture operations (combinations, modulations,
animations etc.)

Vienna University of Technology 31

Fragments

Textured Fragments

Texture Fragments

Raster Tests

Ownership

Is pixel obscured by other window?

Scissor test

Only render to scissor rectangle

Depth test

Test according to z-buffer

Alpha test

Test according to alpha-value

Stencil test

Test according to stencil
buffer

 Vienna University of Technology 32

Textured Fragments Framebuffer Pixels

Raster Operations

Blending or compositing

Dithering

Logical operations

Vienna University of Technology 33

Textured Fragments Framebuffer Pixels

Raster Operations

Scissor
Test

Alpha
Test

Stencil
Test

Depth
Test

Blending
(RGBA only)

Dithering Logicop Frame
Buffer

Stencil BufferDepth Buffer

Fragment
and

associated
data

Pixel
Ownership

Test

Vienna University of Technology 34

After fragment color calculation (“Output
Merger”)

Display

Gamma correction

Digital to analog conversion if necessary

Vienna University of Technology 35

Framebuffer Pixels Light

Display

Frame buffer pixel format:
RGBA vs. index (obsolete)

Bits: 16, 32, 128 bit floating point, …

Double buffered vs. single buffered

Quad-buffered for stereo

Overlays (extra bit planes) for GUI

Auxiliary buffers: alpha, stencil

Vienna University of Technology 36

Functionality vs. Frequency

Geometry processing = per-vertex

Transformation and Lighting (T&L)

Historically floating point, complex operations

Today: fully programmable flow control, texture
lookup

20-1500 million vertices per second

Fragment processing = per-fragment

Blending and texture combination

Historically fixed point and limited operations

Up to 50 billion fragments (“Gigatexel”/sec)

Floating point, programmable complex operations

Vienna University of Technology 37

Application

Geometry

Rasterization

Texture

Fragment

Display

Command

Assume typical non-trivial fixed-
function rendering task

1 light, texture coordinates,
projective texture mapping

7 interpolants (z,r,g,b,s,t,q)

Trilinear filtering, texture-, color
blending, depth buffering

Rough estimate:

Computational Requirements

Vienna University of Technology 38

ADD CMP MUL DIV

Vertex 102 30 108 5

Fragment 66 9 70 1

Communication Requirements

Vertex size:

Position x,y,z

Normal x,y,z

Texture coordinate s,t

 8  4 = 32 bytes

Texture:

Color r,g,b,a, 4 bytes

Display:

Color r,g,b, 3 bytes

Fragment size (in frame
buffer):

Color r,g,b,a

Depth z (assume 32 bit)

 8 bytes, but goes both
ways (because of
blending!)

Vienna University of Technology 39

Communication Requirements

Vienna University of Technology 40

Vertex 5 Gops

Fragment 150 Gops

Framebuffer

0.36 GB/s

1000 Mpix/s

20 Mvert/s

120 Mpix/s
16 GB/s

4 GB/s

0.640 GB/s

Texture Memory

Application

Geometry

Rasterization

Texture

Fragment

Display

Command

