Omni-directional Shadows

Peter Houska

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Omni-directional Shadows

= In reality we often encounter light sources
which cast light “in all directions”

+ Lightbulbs everywhere & ;-)

» It follows that shadows are cast in all
directions

¢ We want to capture this effect in realtime
applications, too!

Institute of Computer Graphics and Algorithms 1

Omni-directional Shadows

= Two common techniques

¢ Omni-directional Shadow Maps
¢ Shadow Volumes

m Modern GPUs and APIs expose extremely
useful functionality

¢ Especially Geometry Shader alleviates many

tasks involveo

= Omni-directiona
and easy to Imp

Institute of Computer Graphics and Algorithm

. |

Shadows nowadays both fast
ement

Overview

m Omni-directional Shadow Maps
m Shadow Volumes

‘ Al
AL
LR, & i \

Institute of Computer Graphics and Algorithms 3

Traditional Shadow Maps

m Established technique

¢ Lance Williams, “Casting Curved Shadows on
Curved Surfaces”, 1978

m Shadow Mapping works perfectly for camera-
like light sources

¢ Directional light
¢ Spotlight
= What about point lights?
¢ Should be casting shadows “in all directions”

Institute of Computer Graphics and Algorithms 4 #

Enhancing Shadow Mapping - Method 1

m Use traditional “light source camera®
¢ Must have 90° FOV

= Orient ,light source-camera” along main world
space axes (+X,-X,+VY,-y,+2,-2)

= Render each direction individually and write
depth to 6 separate textures

= Obviously 6 render passes and 6 shadow
maps needed

m No additional GPU features needed

Institute of Computer Graphics and Algorithms 5

Enhancing Shadow Mapping - Method 2

m Use traditional “light source camera®
¢ Must have 90° FOV

m Orient ,light source-camera” along main world
space axes (+X,-X,ty,-y,+2,-2)

= Render each direction individually and write
depth to 1 cubemap texture in 1 pass

m Geometry shader can
¢ Duplicate rendered geometry
¢ Transform according to each viewing direction
¢ Dispatch fragments to proper cubemap face

Institute of Computer Graphics and Algorithms 6 #

Creating a Geometry Shader Object

m Completely analogous to creating vertex and
fragment shader objects

= Only difference
¢ glCreateShader(GL_GEOMETRY_SHADER);

¢ ... Instead of GL_ VERTEX_ SHADER /
GL _FRAGMENT_SHADER

= Additionally to vertex- and fragment shader
objects, attach geometry shader object to
program object

¢ glAttachShader(program_obj, shader_obj);

Institute of Computer Graphics and Algorithms 7

Creating the Depth Cubemap FBO

m Create depth-cubemap texture

¢ Consists of six 2D depth textures

¢ One for each face with target set to:

GL_TEXTURE_CUBE_MAP_POSITIVE_X
GL _TEXTURE_CUBE_MAP_NEGATIVE_X
GL_TEXTURE_CUBE_MAP_POSITIVE_Y
GL _TEXTURE_CUBE_MAP_NEGATIVE_Y
GL_TEXTURE_CUBE_MAP_POSITIVE Z
GL TEXTURE_CUBE_MAP_NEGATIVE_Z
//or equivalently: GL_TEXTURE_CUBE_MAP POSITIVE X+i, i=@..5

m Create FBO

m Attach cubemap texture at FBO's depth
attachment point

Institute of Computer Graphics and Algorithms 8

Creating the Depth Cubemap Texture

// depth cubemap texture

GLint texID;

glGenTextures (1, &texID);
glBindTexture(GL_TEXTURE_CUBE_MAP, texID);

// fixes seam-artifacts due to numerical precision limitations
glTexParameteri(GL_TEXTURE_CUBE_MAP,
GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE)3
// equivalent calls for
// GL_TEXTURE_WRAP T and GL_TEXTURE_WRAP_ R, respectively

glTexParameteri(GL_TEXTURE_CUBE_MAP,
GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

// equivalent call for GL_TEXTURE_MIN FILTER

Institute of Computer Graphics and Algorithms 9

Creating the Depth Cubemap Texture

// traditional 24 bit unsigned int z-buffer
GLint internal format = GL_DEPTH_COMPONENT24;
GLenum data_type = GL_UNSIGNED INT;

// float z-buffer (if more precision is needed)
// GLint internal format = GL_DEPTH_COMPONENT32F;
// GLenum data_type = GL_FLOAT;

GLenum format = GL_DEPTH_COMPONENT;

for (GLint face = ©@; face < 6; face++) {
glTexImage2D(GL_TEXTURE_CUBE_MAP POSITIVE X + face,

9,
internal format,
texlW, texH, O,
format,
data_type,
NULL //content need not be specified
)

}

Institute of Computer Graphics and Algorithms 10

Attaching Cubemap to FBO

//create FBO

GLuint texFBO;

glGenFramebuffers(l, &texFBO);
glBindFramebuffer(GL_FRAMEBUFFER, texFBO);

//attach depth cubemap texture to FBO’s depth attachment point
glFramebufferTexture(GL_FRAMEBUFFER,

GL_DEPTH_ATTACHMENT,

texID, ©);

//Tell OpenGL that we are aware of the fact, that we did not
//attach a color texture. If we didn‘t do this, OpenGL would
//consider the FBO as incomplete.

glDrawBuffer(GL_NONE);

glReadBuffer(GL_NONE);

// later, when wishing to render to FBO:
glBindFramebuffer(GL_FRAMEBUFFER, texFBO);
glViewport(0, 0, texW, texH);

Institute of Computer Graphics and Algorithms 11

Orienting and Positioning the Cameras

m Each of the 6 cameras must be placed into
the scene correctly

¢ Calculate their view matrices
¢ Split into rotational part ...

= Unigue for each camera
¢ ... and translational part

= The same for all cameras

Institute of Computer Graphics and Algorithms 12

The 6 View Matrices (Rotations)

0 0 -10 0 0 +1 O
0 -1 0 0 0 -1 0 0
POS_X = neg_X=
-1 0 0 O +1 0 0 O
0 0 0 1] 0 0 0 1
+1 0 0 O] (+1 0 0 O
o v 0 0 +1 0 feq v 0 0 -10
POSY=10 1 0 o Y=o 11 0 o0
0 0 0 1 0 0 0 1]
(+1 0 0 O -1 0 0 O]
0 -1 0 0 0 -1 0 0
POS_z = neg_z=
0 0 -10 0 0 +1 0
0 0 0 1 0 0 0 1

Institute of Computer Graphics and Algorithms 13

The 6 View Matrices (Translations)

m Calculate a translation matrix that translates
by —light_pos

Institute of Computer Graphics and Algorithms 14

The 6 View Matrices

= Combine the matrices
¢ V[I]=R[I] T,1€]0; 5]
= V][] ... view matrix for camera i
= R([i] ... rotational part of view matrix |
m T ... translational part

Institute of Computer Graphics and Algorithms 15

15t Pass — Render to Cubemap

= Bind Depth Cubemap FBO
¢ Don‘t forget to call glClear(GL_DEPTH_BUFFER_BIT)

m Calculate 6 view matrices V|6]
m Pass P*V]i] to shader, where

¢ P ... 90° FOV projection matrix

¢ Keeping near- and far plane close together
can help improve depth precision

= Render geometry
¢ no textures, lighting, ...

Institute of Computer Graphics and Algorithms 16

R2CM Vertex Shader

#version 330 core
uniform mat4 M mat; //model matrix (passed per object)
in vec3 attr_vertex; // object space vertex positions
void main(void) {

// transform vertex to world space
gl Position = M_mat * vec4(attr_vertex, 1.0);

// in the GS the value of gl Position can
// be accessed like this:
// gl _in[“triangle_vertex idx“].gl Position;

Institute of Computer Graphics and Algorithms 17

R2CM Geometry Shader

#version 330 core

layout(triangles) in;

//3 vertices per tri, output 6 tris (1 for each cm-face)
layout(triangle strip, max_vertices=18) out;

// contains P*V[i], transforms from WS to cubemap-face i
uniform mat4 cm_mat[6];

out vecd WS pos from GS;

void main(void) {
//iterate over the 6 cubemap faces
for(gl _Layer=0; gl Layer<6; ++gl Layer) {
for(int tri_vert=0; tri_vert<3; ++tri vert) {
WS pos from GS = gl in[tri_vert].gl Position;
gl Position = cm _mat[gl Layer] * WS _pos from GS;
EmitVertex();
}
EndPrimitive();
}
}

Institute of Computer Graphics and Algorithms 18

R2CM Geometry Shader

m gl _Layer special built-in variable
¢ Redirects fragments to different cubemap

faces

Layer Number Cubemap Face

0 GL_TEXTURE_CUBE_MAP_POSITIVE_X
GL_TEXTURE_CUBE_MAP_NEGATIVE_X
GL_TEXTURE_CUBE_MAP_POSITIVE_Y
GL _TEXTURE_CUBE_MAP_NEGATIVE_Y
GL_TEXTURE_CUBE_MAP_POSITIVE Z
GL TEXTURE_CUBE_MAP_NEGATIVE_Z

o B~ W N B

Institute of Computer Graphics and Algorithms

19

R2CM Fragment Shader

#tversion 330 core

uniform vec2 near_far; // near and far plane for cm-cams
uniform vec4 1 pos; // world space light position

in vecd4 WS _pos from GS;
void main(void) {

// calculate distance
float WS _dist = distance(WS_pos from GS, 1 pos);

// map value to [0;1] by dividing by far plane distance
float WS _dist normalized = WS_dist / near_far.y;

// write modified depth
gl FragDepth = WS_dist _normalized;

// when using depth-only FBO, do NOT write to color!!!
}

Institute of Computer Graphics and Algorithms 20

15t Pass — Render to Cubemap

objects which the light rays would
¢ Just as In traditional shadow map

Institute of Computer Graphics and Algorithms 21

= Now cubemap stores the distances to the

NIt first

ollgle

Depth Values Stored in CM

Institute of Computer Graphics and Algorithms

2"d Pass

» Render lit scene

= Use information from 15t pass to determine
shadowed regions

¢ Same basic idea as In traditional SM, but
different lookup needed for cubemap

m Cubemap “situated” in world space

= Depth values stored are scaled distances from
object to light source

Institute of Computer Graphics and Algorithms 23

2"d Pass

m Use vector from surface position to light

position
¢ Vector has direction and magnitude

¢ Direction Is used as the texture coordinate to
address the cubemap

= Now we have smallest distance d_| from light
to scene

¢ Magnitude gives us distance d_s of current
surface point to light source

¢ Compare these distances
m Ifd | <d s the surface point lies in shadow ¥

Institute of Computer Graphics and Algorithms 24

2nd Pass — Cubemap Texture Coords

cubemap centered around light source

/

/‘

Vector from light source to scene-surface point
pierces exactly one cubemap face at a specific
position (2D position on this face) =

texture coordinate for cubemap lookup!

Institute of Computer Graphics and Algorithms 25

2"d Pass — Comparing Distances

Shadowed surface point

d | ... read from
depth cubemap

/\/\ occluder

d_s ... distance surface
point to light source

Institute of Computer Graphics and Algorithms 26

2"d pass: Vertex Shader

#tversion 330 core

in vec3 attr_vertex; // vertex position

uniform mat4 M _mat; //model matrix (passed per object)

/] ...

// additional attributes (vertex normal, tex-coord, ...)
// and uniforms (other matrices etc.)

/] ...

out vecd4 WS pos;
void main(void) {

// e o o
WS pos = M mat * vecd4(attr_vertex, 1.0);

/] ...
¥

Institute of Computer Graphics and Algorithms 27

2"d pass: Fragment Shader (1/2)

#version 330 core
uniform samplerCube cm_z tex;
uniform vec4 1 pos; //world space light position

uniform vec2 near_far; // near and far plane for cm-cams

in vecd4 WS pos;

// ... Possibly other uniforms and varyings

Institute of Computer Graphics and Algorithms 28

2"d pass: Fragment Shader (2/2)

void main(void) {
// calculate vector from surface point to light position
// (both positions are given in world space)
vec3 cm_lookup vec = WS pos.xyz - 1 pos.xyz;

// read depth value from cubemap shadow map
float smallest dist to light = texture(cm_z tex, cm lookup vec).r;

// WS “dist-to-lightsource” for current fragment
float curr_fragment dist to light = length(cm_lookup vec);

// undo previous [0;1]-mapping of ’dist-to-lightsource”
smallest dist to light *= near_far.y;

float eps = 0.15; // add a small offset (adjust as needed)
if(smallest dist to _light+eps < curr_fragment dist to light)
// ==> fragment lies in shadow

// perform other calculations, then set fragment’s color

}

Institute of Computer Graphics and Algorithms 29

Overview

m Omni-directional Shadow Maps
m Shadow Volumes

Institute of Computer Graphics and Algorithms 30

Shadow Volumes - History

m Technique has also been around for quite
some time

¢ Frank Crow, “Shadow Algorithms for
Computer Graphics”, 1977

Institute of Computer Graphics and Algorithms 31

Shadow Volume - Terminology

m For given light source, shadow volume defines
region of space that is in shadow of particular
occluder @

Institute of Computer Graphics and Algorithms 32

Stencil Buffer 101

m Stencil Buffer is useful GPU-feature for
hardware accelerated implementation of the
“is fragment in shadow?”-test

m Stencil Buffer almost always 8bit

¢ Forms 32bit word together with 24bit z-buffer
m Supports basic tests and arithmetic operations
= Used to mask out complex shapes

¢ Actually similar to depth buffer, but more
flexible

Institute of Computer Graphics and Algorithms 33

Stencil Buffer 101

= Conditionally eliminate a pixel based on the
outcome of comparison between reference val
and current pixel's stencil val

glStencilFunc(
GL_EQUAL, // stencil comparison function
9, // reference val
~0 // AND-mask

)5

pixel[x][y] passes if((ref & mask) == (stencil[x][y] & mask))

Institute of Computer Graphics and Algorithms 34

Stencil Buffer 101

m Specify how to update stencil buffer based on
several conditions

glStencilOpSeparate(
GL_FRONT, //is front and/or back stencil state updated?
GL_KEEP, //stencil test fails=> do not change stencil[x][y]
GL_DECR, //if stencil passes but depth test fails=> stencil[x][y]--
GL_INCR //if stencil passes, and depth passes=> stencil[x][y]++

)5

Institute of Computer Graphics and Algorithms 35

Stencil Buffer 101

» Limited range of stencil values (only 8bit) can

cause trouble

¢ Slightly alleviated through wrap-around
arithmethic

glStencilOpSeparate(GL_FRONT, GL KEEP, GL _KEEP, GL_INCR_WRAP);
GL_INCR_WRAP ... Increment with wrap-around, i.e. 255++ => ©

¢ Can still cause aliasing artifacts at multiples of
256; consider stencil value 0O

m0mod 256 =0
m 256 mod 256 =0
mk*256 mod 256 =0

Institute of Computer Graphics and Algorithms 36

Shadow Volume Overview

= Render scene with ambient and emissive lighting only
¢ Also establishes z-buffer
m Determine shadow volume surface
¢ Completely done in GS
m Render shadow volume surface
¢ Update only stencil buffer
m Pixels outside shadow volume have stencil value zero
= Render scene again with diffuse and specular lighting

¢ Additively blend with ambient lighting already in
framebuffer

¢ Rasterize only fragments having stencil value zero ...
¢ ... and if depth(fragment)==zBuffer[x][y]

Institute of Computer Graphics and Algorithms 37 ﬁ

z-Pass vs. z-Fall

m Basic idea:

¢
¢

¢

¢

Institute of Computer Graphics and Algorithms 38

Start counting at O

ncrement counter at shadow volume entry
points

Decrement counter at shadow volume exit
noints

f counter equals zero when geometry is hit,
then we are not in the shadow volume (i.e.
fragment is lit), otherwise we are in shadow

z-Pass vs. z-Fall

m Difference

¢ z-Pass starts counting at camera along
viewing ray until depth test fails (geometry Is
hit)

¢ z-Fall starts counting at infinity and moves

towards the eye until first time visible from the
camera

= Other way to look at this is starting at the eye
and consider only points for which depth test
fails, I.e. points which are further away from
the eye than the first visible point

Institute of Computer Graphics and Algorithms 39 #

z-Pass

Stencil values shown in Blue @

Depth values already stored

Depth values shown in Yellow 1o ST

front face

shadow volume

1... In shadow

Institute of Computer Graphics and Algorithms 40

Why Is z-Pass not Robust?

Stencil values shown in Blue

Depth values shown in Yellow

0 +
-7 shadow volume
,‘! T~<_ 0..Lit- WRONG!
_‘

near-/far plane clipping!

No fragments are rasterized here
=>

stencil buffer is not modified!

Institute of Computer Graphics and Algorithms

Not rendered, because
depth test fails

1 l.e. in shadow - OK!

41

Institute of Computer Graphics and Algorithms 42

43

Institute of Computer Graphics and Algorithms

Is z-Fail Robust?

Stencil values shown in Blue

Because polygon clipped by
far plane, no fragment gets
rasterized for this part of the
surface => stencil buffer is
not modified

Depth values shown in Yellow @

Since depth test does not fail
(z test passes), stencil

buffer is not modified, '
+1 ’/ 0 ... start
/ - . 1.e. in shadow - OK!
shadow volume \

ie NO shadow - WRONG!

additionally:
near plane clipping! ~w_ 0 ... start

Institute of Computer Graphics and Algorithms 44

z-Fail

m It seems we have only shifted the z-Pass

problem of near plane clipping to the far plane

m At first sight this does not really help, right?

¢ At least a lot easier to fix at the other end of
the view-frustum ©

¢ Simply make sure to never clip shadow
volume-mesh at the far plane

= Depth clamp or infinite projection matrix

¢ Close shadow volume-mesh from both sides
= Light- and dark cap

¢ Now counter does not get messed up

Institute of Computer Graphics and Algorithms 45

No Far Plane Clipping TU

VIENNA

Institute of Computer Graphics and Algorithms

z-Fall

Stencil values shown in Blue

Depth values shown in Yellow @

(z test passes) =>
stencil buffer not modified

Institute of Computer Graphics and Algorithms 47

Each Frame

// make sure we clear buffers to desired values
glClearColor(0.0, 0.4, 0.0, 1.0);

glClearDepth(1.0); // clear to far plane distance in DC
glClearStencil(0);

// enable respective buffers for writing

// (in this case a "clear");
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthMask (GL_TRUE);

glStencilMask(~0);

// perform actual clear-buffers-operation

glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER BIT |
GL_STENCIL_ BUFFER_BIT);

Institute of Computer Graphics and Algorithms 48

Ambient Pass

glEnable(GL_CULL_FACE);
glDisable(GL_STENCIL TEST);

glEnable(GL_DEPTH _TEST);

glDepthFunc(GL_LESS);

glDepthMask(GL_TRUE);

glDisable(GL_BLEND);

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

// render scene

Institute of Computer Graphics and Algorithms 49

Shadow Volume Pass

glEnable(GL_DEPTH_CLAMP);

glDisable(GL_CULL_FACE);

glEnable(GL_STENCIL TEST);

if(zpass) {
glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR_WRAP);
glStencilOpSeparate(GL _BACK, GL_KEEP, GL_KEEP, GL_DECR_WRAP);

}
else { //zfail

glStencilOpSeparate(GL_FRONT, GL_KEEP, GL _DECR_WRAP, GL_KEEP);
glStencilOpSeparate(GL _BACK, GL_KEEP, GL_INCR_WRAP, GL_KEEP);
}
glStencilFunc(GL_ALWAYS, 0, ~0);
glStencilMask(~0);
glEnable(GL_DEPTH _TEST);
glDepthFunc(GL_LESS);
glDepthMask(GL _FALSE); // do not write to z-buffer
glDisable(GL_BLEND);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);

// render shadow volume polygons
glDisable(GL_DEPTH_CLAMP);

Institute of Computer Graphics and Algorithms 50

Diffuse+Specular Pass

glEnable(GL_CULL_FACE);
glEnable(GL_STENCIL_TEST);

//glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); //works well, but:
glStencilOp(GL_KEEP,GL_KEEP,GL_INCR);

// The INCR zpass stencil operation avoids double

// blending of lighting contributions in usually quite rare
// circumstance when two fragments alias to exact same pixel
// location and depth value

glStencilFunc(GL_EQUAL, @, ~0);

glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_EQUAL);

glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

Institute of Computer Graphics and Algorithms 51

Visualizing the Shadow Volume Surface

glEnable(GL_DEPTH_CLAMP);
glDisable(GL_CULL_FACE);

glEnable(GL_DEPTH _TEST);
glDepthMask (GL_FALSE);

//glDepthFunc(GL_LESS); //works well, but:
glDepthFunc(GL_LEQUAL); //works better for depth-clamp

//render surface transparently
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL ONE); //additive alpha-blending

Institute of Computer Graphics and Algorithms 52

How to Determine Shadow Volume Polys

= Until now we looked on application-side
(OpenGL state-settings) only
= What happens on the GPU?

¢ Before looking at shaders a small, but
iImportant detall is still missing

¢ In GS we need adjacency information for each
triangle

¢ Bolls down to sending 6 vertices per triangle
iInstead of only 3

Institute of Computer Graphics and Algorithms 53

Adjacent triangles

= By simply passing 3 additional vertices per
triangle we have access to the three neighbor
triangles along the triangle-edges

4
5.: ~ ',3

1 Image taken from [GPUGems3]

Institute of Computer Graphics and Algorithms 54 #

Adjacent triangles

m For every shadow caster store vertex data

and
¢ Create index for standard triangle rendering
= 3 vertices make up a triangle
¢ Create index for adjacent triangle rendering
= 6 vertices make up a triangle

= Whenever rendering the shadow-volume we
need the adjacency information

m For more Iinfo, see [Len]]

Institute of Computer Graphics and Algorithms 55

Tackling possible Artifacts

= In final light-blend pass we rely on depth test
for equal z-value

¢ Problem when using multiple passes due to
numerical errors

¢ Make sure transformations “match exactly”

¢ So employ same vertex shader for standard-
and for shadow volume rendering

¢ Declare position as invariant

Institute of Computer Graphics and Algorithms 56

(Shared) SV-Vertex Shader

#tversion 330 core

uniform mat4 PV _mat; // (projection * view) matrix
uniform mat4 M_mat; // model matrix

in vec3 attr_vertex; // object space vertex position
invariant out vec4 WS pos; // to be passed on to GS
// and possibly other uniforms and varyings

void main(void) {
/] ...
WS pos = M mat * vecd4(attr_vertex, 1.0);
vec4 CS _pos = PV_mat * WS pos;
// transform to CS as usual,

// so VS still works for standard rendering
gl Position = CS_pos;

Institute of Computer Graphics and Algorithms 57

(Shared) SV-Geometry Shader (1/8)

#version 330 core

//our primitive is made up of 6 vertices
layout(triangles adjacency) in;

layout(triangle strip) out; //write out triangle strips

//(3 + 3 for the two caps plus 4 x 3 for the sides)
layout(max_vertices=18) out;

uniform mat4 PV_mat; // (projection * view) matrix

uniform vec4 1 pos; // Light position (world space)
uniform int zpass; // Is it safe to do z-pass?

// passed from VS

// array[6] because our primitive is made up of 6 vertices
invariant in vec4 WS _pos[6];

// and possibly other uniforms and varyings

Institute of Computer Graphics and Algorithms 58

(Shared) SV-Geometry Shader (2/8)

void main(void)

{

vec3 ns[3]; // Normals
vec3 d[3]; // Directions toward light
vecd v[4]; // Temporary vertices

// Triangle oriented toward light source
vecd4 or _pos[3];

or_pos[@] = WS _pos[0];

or_pos[1l] = WS _pos[2];

or_pos[2] = WS _pos[4];

Institute of Computer Graphics and Algorithms 59

(Shared) SV-Geometry Shader (3/8)

// Compute normal at each vertex.

ns[0]

WS_
WS_

ns[1]

WS_
WS_

ns[2]

WS_
WS_

= cross(
pos[2].xyz
pos[4].xyz
= cross(
pos[4].xyz
pos[0].xyz
= cross(
pos[0].xyz
pos[2].xyz

WS pos[0].xyz,
WS pos[@].xyz);

WS pos[2].xyz,
WS pos[2].xyz);

WS pos[4].xyz,
WS pos[4].xyz);

// Compute direction from vertices to light.
1 pos.xyz-1 pos.w*WS pos[@].xyz;
1 pos.xyz-1 pos.w*WS pos[2].xyz;
1 pos.xyz-1 pos.w*WS pos[4].xyz;

d[e]
d[1]
d[2]

Institute of Computer Graphics and Algorithms 60

(Shared) SV-Geometry Shader (4/8)

// Check if the main triangle faces the light.
if (!(dot(ns[@],d[0])>0 || dot(ns[1],d[1])>0 ||
dot(ns[2],d[2])>@)) {
return; // Not facing the light => irrelevant for SV
}
// when we get here, we know current triangle is facing the light
const bool faces light=true;

Institute of Computer Graphics and Algorithms 61

(Shared) SV-Geometry Shader (5/8)

// Render caps - only needed for z-fail.
if (zpass == 0) {

// Near cap - simply render triangle

gl Position = PV_mat*or pos[@]; EmitVertex();
gl Position = PV_mat*or pos[1]; EmitVertex();
gl Position = PV_mat*or pos[2]; EmitVertex();
EndPrimitive();

// Far cap - extrude positions to infinity (w=0)

// note the different triangle-winding order (0-1-2 => 0-2-1)
v[@] = vecd4(l pos.w*or pos[@].xyz-1 pos.xyz,0);

v[1l] = vec4(l pos.w*or pos[2].xyz-1 pos.xyz,0);

v[2] = vecd4(l pos.w*or pos[1l].xyz-1 pos.xyz,0);

gl Position = PV_mat*v[@]; EmitVertex();
gl Position = PV_mat*v[1l]; EmitVertex();
gl Position = PV_mat*v[2]; EmitVertex();
EndPrimitive();

}

Institute of Computer Graphics and Algorithms 62

(Shared) SV-Geometry Shader (6/8)

// Loop over all edges and extrude if needed.
for (int i=0; i<3; i++) {
// Compute indices of neighbor triangle.
int v = i*2;
int nb = (i*2+1);
int vl = (i*2+2) % 6;

// Compute normals at vertices, the *exact*
// same way as done above!
ns[@] = cross(
WS _pos[nb].xyz-WS pos[vO].xyz,
WS _pos[vl].xyz-WS pos[vO].xyz);
ns[1] = cross(
WS _pos[vl].xyz-WS pos[nb].xyz,
WS _pos[v@].xyz-WS _pos[nb].xyz);
ns[2] = cross(
WS _pos[v@].xyz-WS pos[vl].xyz,
WS _pos[nb].xyz-WS pos[vl].xyz);

Institute of Computer Graphics and Algorithms 63

(Shared) SV-Geometry Shader (7/8)

// Compute direction to light, again as
d[@] =1 pos.xyz-1 pos.w*WS pos[ve@].
d[1] =1 pos.xyz-1 pos.w*WS pos[nb].
d[2] =1 _pos.xyz-1 pos.w*WS pos[vl].

Institute of Computer Graphics and Algorithms

64

above.
XyZ;
XyZ;
XyZ;

(Shared) SV-Geometry Shader (8/8)

// Extrude the edge if it does not have a

// neighbor, or if it's a possible silhouette.

if (WS_pos[nb].w<0.001 || (faces_light!=(dot(ns[@],d[@])>0 ||
dot(ns[1],d[1])>0 ||
dot(ns[2],d[2])>@))) {

// Make sure sides are oriented correctly.

int i@ = faces _light ? vO : vi1;

int i1l = faces_light ? vl : vo;

v[@] = WS_pos[i@];

v[1l] = vecd4(l pos.w*WS pos[i@].xyz - 1 pos.xyz, 0);
v[2] = WS _pos[il];

v[3] = vecd4(l pos.w*WS pos[il].xyz - 1 pos.xyz, 0);
// Emit a quad as a triangle strip.

gl Position = PV_mat*v[@]; EmitVertex();

gl Position = PV_mat*v[1l]; EmitVertex();

gl Position = PV_mat*v[2]; EmitVertex();

gl Position = PV_mat*v[3]; EmitVertex();
EndPrimitive();

}
}

Institute of Computer Graphics and Algorithms 65

(Shared) SV-Fragment Shader

#tversion 330 core

out vecd4 frag data 0;

void main(void)

{
// color value actually only used when visualizing
// shadow volume mesh
// important thing happens implicitly (compare to depth buffer!):
// stencil buffer is updated according to previous
// state-configuration from the app
frag data @ = vec4(0.25, 0.25, 0.125, 0.25);
}

Institute of Computer Graphics and Algorithms 66

=
V)
=
O

1SON

Compar

Institute of Computer Graphics and Algorithms

>
7))

1SON

Compar

Institute of Computer Graphics and Algorithms

Institute of Computer Graphics and Algorithms

Institute of Computer Graphics and Algorithms

Institute of Computer Graphics and Algorithms

Institute of Computer Graphics and Algorithms

:1)

=
W
@)
o
i

Point Light (ligh

74

Institute of Computer Graphics and Algorithms

% \\ AN LR

Directio TU

Institute of Computer Graphics and Algorithms

References

http://http.developer.nvidia.com/GPUGems/gpugems chl12.html

B http://http.developer.nvidia.com/GPUGems/gpugems ch09.html

m [Lenl]
nttp://www.terathon.com/code/edges.html

m [GPUGems3]

http://http.developer.nvidia.com/GPUGems3/gpugems3 chll.html

m Special thanks to Eric Lengyel, Mark Kilgard
and Cass Everitt!

Institute of Computer Graphics and Algorithms 76

http://http.developer.nvidia.com/GPUGems/gpugems_ch12.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch09.html
http://www.terathon.com/code/edges.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch11.html

