
RaCity
Submission 2 - Documentation

Important notice:

We used our implementation from the CGUE-2018S course as a starting point. Therefore,

most of the basic features (OpenGL 4.x Core Profile rendering, simple illumination model,

Textures, Physics via Nvidia PhysX, Debug camera) have already been implemented before

we started to work on the demo.

For this submission, we adapted our existing solution for the requirements of the Real-time

rendering course, by adding an appropriate scene and automatic camera movement.

Story:

Our demo starts in a garage in a small city. Two cars are parked inside the garage. Multiple

moving camera shots reveal the vehicles and various parts of the garage to the viewer.

Multiple spotlight sources are illuminating the garage and the cars. After some time one of

the cars starts moving outside of the garage into the city. The camera follows the car as it

leaves the garage, drives through a spotlight (street lamps) illuminated street, shows some

of the city and then pans to the side as the demo ends.

Features:

Texture mapping
Every object in the game has UV-coordinates, is therefore textured and is loaded with

assimp from a resource file (.obj, .dae, etc). If a texture is missing (or not set for artistic

reasons), a default white 1x1 pixel texture is used, so the color of the object is defined only

by the material coefficients (ambient, diffuse, specular and emissive). The skybox is a

cubemap wrapped on a simple cube, rendered as last object of the scene and with it’s depth

value set to max so it always fails the depth test if there are elements in front. The skybox

texture was taken from “https://93i.de/p/free-skybox-texture-set”

Lighting
The object loader reads all the light and material data from the resource file of the map

(map needs to be saved as Collada-file therefore) and supports directional, point and

spotlights. There is one directional light (moonlight), a few spotlights in the garage to

illuminate the cars and posters and a lot of spotlights on both street sides to illuminate the

main street in the scene. All objects use the phong illumination model.

.

Automatic camera movement:

We create our scene in Blender, export it as Collada (.dae) file and import it in our project

using the assimp library. We animate our camera motion in Blender and import it into our

project. To create an automatic camera movement we created a class for animated

properties that stores a keyframe list. To get the current value of an animated property, a

timestamp must be provided. The value of the animated property is obtained via linear

interpolation of the two closest keyframes in the keyframe list and using the provided

timestamp. We added animated properties for the position, rotation and scale of the

camera. By retrieving all three values of these animated properties at a given time the

MV-matrix of the camera can be generated.

The demo was tested on NVIDIA graphics cards!

Models:

The models that can be seen in our demo were taken from the following external sources

and further edited in Blender.

● https://rigmodels.com/model.php?view=Garage-3d-model__4XEVGVA1GGXMSO1O

2N90MVXNG&searchkeyword=garage

● https://www.turbosquid.com/3d-models/3d-car-bugatti-veyron-1161465

● https://rigmodels.com/model.php?view=Skyscraper-3d-model__3QQSRTIVT5E7UFB

USCDI2XYL4&searchkeyword=skyscraper

● https://rigmodels.com/model.php?view=Skyscraper-3d-model__7C8014G7Z0O530Z

N5NQG236PX&searchkeyword=skyscraper

● https://rigmodels.com/model.php?view=Skyscraper-3d-model__3S3KLK80T3SYFVSF

99WB0MI9R&searchkeyword=skyscraper

● https://rigmodels.com/model.php?view=Elevator-3d-model__SG6ERUHNZB6AF8EP5

19PMYXUO&searchkeyword=skyscraper

● https://rigmodels.com/model.php?view=Street_Front-3d-model__TB3PD20FR9BTIIF

H5TL6LUB99&searchkeyword=street

● https://rigmodels.com/model.php?view=Street_Front-3d-model__74DCD00EGAYW

WE14QV69WOTZ0&searchkeyword=street

● https://rigmodels.com/model.php?view=Street_Front-3d-model__D8L1JNI1REZFM9

FVZW40RQG93&searchkeyword=street

● https://rigmodels.com/model.php?view=Building_Front-3d-model__3KMR3VGZOESI

U6PZ8GXXYGT3F&searchkeyword=street

● https://rigmodels.com/model.php?view=Scene-3d-model__ETFCFLAZQZMXBFYBPSI

Q3K6TW&searchkeyword=street

● https://rigmodels.com/model.php?view=Street_Lamp-3d-model__HOKGIVE33UW3

O1ABN7TVHD6R2&searchkeyword=street%20lamp

● https://rigmodels.com/model.php?view=Mail_Snorkel_Box-3d-model__F8EZ71ZXBP

SZ74JMDKE2STL87&searchkeyword=street

https://rigmodels.com/model.php?view=Garage-3d-model__4XEVGVA1GGXMSO1O2N90MVXNG&searchkeyword=garage
https://rigmodels.com/model.php?view=Garage-3d-model__4XEVGVA1GGXMSO1O2N90MVXNG&searchkeyword=garage
https://www.turbosquid.com/3d-models/3d-car-bugatti-veyron-1161465
https://rigmodels.com/model.php?view=Skyscraper-3d-model__3QQSRTIVT5E7UFBUSCDI2XYL4&searchkeyword=skyscraper
https://rigmodels.com/model.php?view=Skyscraper-3d-model__3QQSRTIVT5E7UFBUSCDI2XYL4&searchkeyword=skyscraper
https://rigmodels.com/model.php?view=Skyscraper-3d-model__7C8014G7Z0O530ZN5NQG236PX&searchkeyword=skyscraper
https://rigmodels.com/model.php?view=Skyscraper-3d-model__7C8014G7Z0O530ZN5NQG236PX&searchkeyword=skyscraper
https://rigmodels.com/model.php?view=Skyscraper-3d-model__3S3KLK80T3SYFVSF99WB0MI9R&searchkeyword=skyscraper
https://rigmodels.com/model.php?view=Skyscraper-3d-model__3S3KLK80T3SYFVSF99WB0MI9R&searchkeyword=skyscraper
https://rigmodels.com/model.php?view=Elevator-3d-model__SG6ERUHNZB6AF8EP519PMYXUO&searchkeyword=skyscraper
https://rigmodels.com/model.php?view=Elevator-3d-model__SG6ERUHNZB6AF8EP519PMYXUO&searchkeyword=skyscraper
https://rigmodels.com/model.php?view=Street_Front-3d-model__TB3PD20FR9BTIIFH5TL6LUB99&searchkeyword=street
https://rigmodels.com/model.php?view=Street_Front-3d-model__TB3PD20FR9BTIIFH5TL6LUB99&searchkeyword=street
https://rigmodels.com/model.php?view=Street_Front-3d-model__74DCD00EGAYWWE14QV69WOTZ0&searchkeyword=street
https://rigmodels.com/model.php?view=Street_Front-3d-model__74DCD00EGAYWWE14QV69WOTZ0&searchkeyword=street
https://rigmodels.com/model.php?view=Street_Front-3d-model__D8L1JNI1REZFM9FVZW40RQG93&searchkeyword=street
https://rigmodels.com/model.php?view=Street_Front-3d-model__D8L1JNI1REZFM9FVZW40RQG93&searchkeyword=street
https://rigmodels.com/model.php?view=Building_Front-3d-model__3KMR3VGZOESIU6PZ8GXXYGT3F&searchkeyword=street
https://rigmodels.com/model.php?view=Building_Front-3d-model__3KMR3VGZOESIU6PZ8GXXYGT3F&searchkeyword=street
https://rigmodels.com/model.php?view=Scene-3d-model__ETFCFLAZQZMXBFYBPSIQ3K6TW&searchkeyword=street
https://rigmodels.com/model.php?view=Scene-3d-model__ETFCFLAZQZMXBFYBPSIQ3K6TW&searchkeyword=street
https://rigmodels.com/model.php?view=Street_Lamp-3d-model__HOKGIVE33UW3O1ABN7TVHD6R2&searchkeyword=street%20lamp
https://rigmodels.com/model.php?view=Street_Lamp-3d-model__HOKGIVE33UW3O1ABN7TVHD6R2&searchkeyword=street%20lamp
https://rigmodels.com/model.php?view=Mail_Snorkel_Box-3d-model__F8EZ71ZXBPSZ74JMDKE2STL87&searchkeyword=street
https://rigmodels.com/model.php?view=Mail_Snorkel_Box-3d-model__F8EZ71ZXBPSZ74JMDKE2STL87&searchkeyword=street

● https://rigmodels.com/model.php?view=Building-3d-model__W3X2VMUKR89GNUL

CKZH6HJMMD&searchkeyword=city

Effects:

The following effects were implemented:

- Shadow maps (with percentage closer filtering)​:
Our demo implements shadow mapping for both directional and spotlights. Since our

scene contains only one directional light (the moon light), we do not deal with multiple

shadow maps for directional lights. However, our scene contains multiple spotlights.

Our first approach was to simply render the shadow map for the closest spotlight to the

camera. The problem with this is that the shadow suddenly appeared and disappeared,

when the camera was moving. We mitigate this problem by always rendering the twelve

spotlights that were close to the camera. Therefore, we always render 13 shadow maps

for different lights each frame. This has a noticeable impact on the performance of our

demo. However, since we are still able to maintain a framerate of >= 60 fps, we did not

further optimize the shadow mapping.

The shadow mapping is integrated into the deferred shading effect. At first we render

all 13 shadow maps, then we supply them to the geometry stage of the deferred

rendering effect and render the shadow factors into two additional framebuffer color

attachments (one for the directional light and one for all spotlights).

The shadow maps for the spotlights are rendered using a perspective camera at the

spotlight’s locations looking into the spotlight’s direction. The shadow map for the

directional light is rendered using an orthographic camera. We adapt the size of the size

of the shadow map (zooming in and out), depending on the camera’s location. The

closer the camera is to the ground, the more zoomed in the orthographic camera is. This

improves the visual appearance of the shadows when the camera is close to it.

However, it also generates artifacts due to the limited field of view of the rendered

shadow map. These artifacts are noticeable, when the camera is close to the ground

and looking into the distance, where suddenly no shadows are rendered anymore. We

decided that the benefits of an adaptive orthographic camera for rendering the shadow

map of the directional light outweigh the drawbacks.

Literature:

o Williams, Lance. “Casting Shadows on Curved Surfaces.” (1978).

o Wimmer, Michael et al. “Light Space Perspective Shadow Maps.” (2004).

o Scherzer, Daniel. “Robust Shadow Maps for Large Environments.” (2005).

o Zhang, Fan et al. “Parallel-Split Shadow Maps on Programmable GPUs” (2007).

(url: ​https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch10.html​)

https://rigmodels.com/model.php?view=Building-3d-model__W3X2VMUKR89GNULCKZH6HJMMD&searchkeyword=city
https://rigmodels.com/model.php?view=Building-3d-model__W3X2VMUKR89GNULCKZH6HJMMD&searchkeyword=city
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch10.html

- Deferred shading​:
The biggest advantage of deferred shading is that lighting can be calculated for a large

number of different dynamic lights regardless of the scene complexity. This is achieved

by separating the processing of the scene geometry from the actual lighting calculation.

In our demo we created two different rendering passes: a geometry pass and a lighting

pass. The geometry pass processes the scene geometry and renders all the information

that is necessary for the lighting calculation of a pixel into a separate framebuffer color

attachment. We rendered the following pixel information in separate color attachments

in the geometry pass: Position, Normal, Albedo color, Shininess factor, Ambient factor,

Diffuse factor, Specular factor, Specular color, Shadow factor for directional lights and

Shadow factor for spotlights.

All these separate framebuffer color attachments are supplied to the lighting pass as

textures, where the lighting calculation if performed for each pixel. Since the textures

already contain all the information of the scene that shall be displayed in screen space

coordinates, the lighting pass simply projects the output of the geometry pass onto a

plane that has the size of the screen (after performing the lighting calculation for each

pixel).

Literature:

o Policarpo, Fabio et al. “Deferred shading tutorial” (2009).

o Kumar, Samir “Optimization to Deferred Shading Pipeline” (2017).

o Valient, Michal “The Rendering Technology of Killzone 2” (2009). (url:

https://www.guerrilla-games.com/read/the-rendering-technology-of-killzone-2​)
o Shishlovtsov, Oles “Chapter 9. Deferred Shading in S.T.A.L.K.E.R” (2005). (url:

https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter09.html​)

The following additional source were used to implement the effects:

● http://ogldev.atspace.co.uk

Controls:

Key Effect

ESC Quit demo

F2 Frametime on/off

F3 Wireframe on/off

F4 Switch screen buffer to display (Position, Normal, etc.)

F8 Frustum culling on/off

+/~ Toggle fullscreen/windowed

C Toggle camera freeview/automatic

https://www.guerrilla-games.com/read/the-rendering-technology-of-killzone-2
https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter09.html
http://ogldev.atspace.co.uk/

Used libraries:

● GLM for math

https://glm.g-truc.net

● ASSIMP for model loading

http://www.assimp.org/

● STB Image for image loading

https://github.com/nothings/stb

● Inih for settings file parsing

https://github.com/benhoyt/inih

● Freetype for font loading

https://www.freetype.org/

● GLFW for window handling

http://www.glfw.org/

● GLEW for opengl extension loading

http://glew.sourceforge.net/

https://glm.g-truc.net/
http://www.assimp.org/
https://github.com/nothings/stb
https://github.com/benhoyt/inih
https://www.freetype.org/
http://www.glfw.org/
http://glew.sourceforge.net/

