
Amusement Park 
Submission 2 

Martin Novak, 01425662 
Bernhard Langer, 00427400 

Controls 
Keyboard Commands: 
Space​: Switches between automatic and debug camera 
Backspace​: Resets the animation to the beginning 
F4​: Toggles Postprocessing on/off (default on) 
 
Debug camera controls: 
Mouse movement for camera direction. 
Mouse wheel to zoom in and out. 
Keyboard WASD to translate camera horizontally and vertically. 

Engine 

Hardware and Build 
The Demo targets both Windows and Linux, thus only cross platform libraries were used. 
We use CMake to generate a platform and IDE independent solution. 
We only support 64bit architecture. 
Main development was done on an nVidia GPU, but we also tested it on an AMD. 

Scene Description 
We use simple text files to describe the scene that we load dynamically at runtime. 
These text files contain the models and lights that we use and parameters such as their 
position, scale and orientation. 

Models 
A simple model loader is implemented using AssImp. 
We included textured models of a ferris wheel, a carousel, a stone tower, a firework volcano and 
the park terrain itself. 



Lighting 
For Illumination we have implemented both point and spot lights. There is already some code 
present for directional lights, but they have not been added to the illumination model yet. 

Automatic Camera 
Two paths describe the movement of the automatic camera: 
One path for the camera position and one path for the camera direction (Point of interest). 
The camera paths consists of segments, where each is implemented as a Bezier curve. 
For a smoother start and stop (accelleration) we included a sinusoid transfer function. 

Various 
Textures are loaded using STB (stb_image) 
Additionally we included a skybox. 

Effects 

Particle Effects (Compute Shader Based) 
We included two different firework effects: 
A firework fountain (aka volcano firework) that constantly shoots particles vertically in the air 
Classic firework rockets that generate multiple particles of the same color in an explosion 
(where each explosion comes in a different color). 
Similar to the TTL value in the position ssbo, we take advantage of the unused float in the 
velocity ssbo where we store a single float and treat it as the hue of the HSV color model. 

Volumetric Lighting and Shadows (with PCF) 
We included a spotlight mounted on the ferris wheel that lights up the area between the wheel 
and the carousel. Shadows of the carousel horses can be seen on the carousel floor and the 
light cone of the spotlight is emphasized using volumetric lighting. 
Volumetric lighting is implemented as postprocessing effect and thus only rendered once for 
each frame. For the volumetric lighting we limited the sampling depth to 20 meters for 
performance reasons, thus the cone appears as the camera comes close enough. 



Screenspace Reflections and Refractions 
We implemented both reflections and refractions for a lake of the scene and included a sunken 
stone tower model to emphasize the refractions below the water surface. The reflections of the 
tower and the mountain behind the lake and said refractions can be seen in the beginning of the 
animation. We first use a fixed step size to find the rough intersection coordinates and then 
refine them using a binary search. This allows a relative high quality intersection even on further 
away objects, while reducing the average amount of samples needed. We have both single and 
double refractions. Single refractions are used for the lake and is illustrated by the tower, 
showing the subsurface refraction. Double refractions are used for the sphere to demonstrate 
the internal refraction of glass. To hide the cuts where sample lookups leave the image area, 
results are fading out towards those edges. 

Ad Postprocessing 
For postprocessing we render the scene into a framebuffer and render its content using a 
postprocessing shader. Both volumetric lighting and screenspace reflections and refractions are 
implemented in this shader. When postprocessing is turned off (F4), the scene is rendered 
directly to the screen instead of the pp framebuffer. 

Resources and References 
GLFW and GLEW for OpenGL integration and window management 
GLM for mathematics ​https://glm.g-truc.net 
AssImp for model loading ​http://www.assimp.org/ 
Stb for texture loading ​https://github.com/nothings/stb 
The textures were taken from the total textures repo provided by the course as well as created 
by hand using GIMP. 
All models were created using Blender. 
The skybox was borrowed from ​http://www.custommapmakers.org/skyboxes.php​ (GNU GPL2 
license) 
Particle Effects are based on the implementation given in the RTR repetition lectures for 
compute shaders and particle systems. 
Volumetric Lighting Effects are based on the implementation given in the RTR repetition lecture 
of the same name. 
Shadow maps with percentage closer filtering and framebuffer implementation are based on the 
tutorials given by ​https://learnopengl.com/​. 
SSR is based on the corresponding slides from the RTR lecture for screenspace effects and 
Wyman, Chris. "An approximate image-space approach for interactive refraction." ACM 
transactions on graphics (TOG) 24.3 (2005): 1050-1053. 
 

https://glm.g-truc.net/
http://www.assimp.org/
https://github.com/nothings/stb
http://www.custommapmakers.org/skyboxes.php
https://learnopengl.com/


Some code for serialization was taken directly from my personal project. 
For reference while building the engine we used the tutorials from ​https://learnopengl.com/​ and 
http://www.opengl-tutorial.org/​. 
 

https://learnopengl.com/
http://www.opengl-tutorial.org/

