
Spooky house
Real-time rendering prototype

Group 5
https://github.com/Welko/ezg18-spookyhouse

Lucas da Cunha Melo 01429462 e1429462@student.tuwien.ac.at

Elitza Vasileva 01426939 e1426939@student.tuwien.ac.at

https://github.com/Welko/ezg18-spookyhouse
mailto:e1429462@student.tuwien.ac.at
mailto:e1426939@student.tuwien.ac.at

Brief description of the implementation
In our demo, the following features were implemented
● 3D rendering with OpenGL 4.5 (tested on Windows 10 64-bit).
● Effects:

○ Specular Mapping
○ Normal Mapping
○ Omni-directional Shadow Mapping
○ Range-Based Fog
○ Ambient Occlusion (SSAO)
○ Bloom
○ HDR
○ Volumetric Fog
○ GPU particle effects

● Camera movement: Camera is moving along a predefined path consisting of some
key positions and directions and using linear interpolation between them.

● Model loading: Our scene is one big model which is loaded using Assimp from a
Wavefront (.obj) file.

● Animations: There are some moving objects in the scene, which were created by
applying simple matrix transformations.

● A simple illumination model. Including the following components:
○ Ambient illumination
○ Diffuse reflection
○ Specular reflection
○ Multiple light sources on different positions

For debugging and to explore the scene, a controllable camera was also implemented,
which is currently disabled due to the automatic camera movement.
Its controls are listed and described in the table below.

Controls

W

Move camera

Forward

A Left

S Backward

D Right

Q Down

E Up

Mouse

movement

Rotate camera

Shortcuts

F1 Specular mapping (OFF, ​ON​)

F2 Normal mapping (OFF, ​ON​)

F3 Bloom (OFF, ​FRAG​, COMP)

F4 HDR (OFF, ​LINEAR​, DRAGO, DRAGO
MODIFIED)

F5 Shadow mapping (OFF, ​ON​)

F6 Fog (OFF, ​ON​)

F7 Ambient occlusion (OFF, ​ON​)

F8 Bubbles (OFF, ​ON​)

F9 Fire (OFF, ​ON​)

F10 Rain (OFF, ​ON​)

U Increase auto-camera speed

I Decrease auto-cameras speed

SPACEBAR Camera mode (FREE, ​RAIL​)

ESCAPE Quit

Special Features and Information
● The animation is based on keypoints, so that at each of this key points we define the

camera position and where it looks at.
● The model of the house was actually modeled in Blender by following a tutorial in

YouTube.
● All the normal and specular maps were created by ourselves using the program

Crazybump.
● There are sound effects playing at certain keypoints of the camera movement.
● To clone our repository you must use git LFS.
● We perform frustum culling not only for the camera (so objects outside of the field of

view are not drawn), but also for each of the six directions of a point light that emits
shadows (for shadow mapping).

● It starts to rain at the end of the demo.

Additional libraries
The libraries used in the prototype are listed and described in the table below.

Library name Use Link

GLFW Window creation,
management and input for
OpenGL

https://www.glfw.org/

GLEW Query and load OpenGL
extensions

http://glew.sourceforge.net/

GLM Mathematical objects and
functions based on GLSL

https://glm.g-truc.net/0.9.9/in
dex.html

stb_image Image loading into memory https://github.com/nothings/
stb/blob/master/stb_image.h

Assimp 3D models loading into
memory (meshes and
materials)

http://www.assimp.org/

IrrKlang For loading and playing
music

https://www.ambiera.com/irr
klang/

Effects

Specular Mapping

Textures are used to specify different specular values for an object at specific positions.

Normal Mapping

Textures are used to specify different values for the normal vector for an object and thus
create the effect of rough surface even though the surface is flat.

Currently, the engine must have normal mapping switched on. Otherwise, the textures will
glitch.

Sources:
● EZG Lecture
● https://learnopengl.com/Advanced-Lighting/Normal-Mapping

https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Omni-Directional Shadow Mapping

A cube texture is calculated from the point of view of a light source, where the 6 faces
represent the “point of view” of the light and render only the depth values of the scene.
These are then used to calculate whether a fragment is illuminated or not by objects.

Sources:
● EZG Lecture
● https://learnopengl.com/Advanced-Lighting/Shadows/Point-Shadows

https://learnopengl.com/Advanced-Lighting/Shadows/Point-Shadows

Range-Based Fog

A range-based fog was implemented by using an exponential function to define the
strength of the fog depending on the distance of the camera from the objects.

Sources:
● http://in2gpu.com/2014/07/22/create-fog-shader/

http://in2gpu.com/2014/07/22/create-fog-shader/

Ambient Occlusion (SSAO)

We use ambient occlusion to simulate the scattering of light in our scene, so that places
where the different objects are close to each other look darker. We use two framebuffers -
one to calculate the occlusion and one to apply a blur effect on the ambient occlusion texture
in order to reduce noise.

Sources:
● http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
● https://learnopengl.com/Advanced-Lighting/SSAO

http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
https://learnopengl.com/Advanced-Lighting/SSAO

Bloom

Two different approaches for bloom were implemented. One using fragment shaders,
where the scene is filtered for values above a certain threshold, which are then stored in a
separate texture. This texture is then blurred in a fragment shader by sampling points in
between texels with linear interpolation, achieving an efficient blur in less passes.

The second blur alternative, using compute shaders, was inspired by the technique
mention in the Repetitorium, where, within a workgroup, calculated values can be reused.

Source:
● EZG Lecture and Repetitorium

High Dynamic Range
HDR was implemented following some models presented in [Luksch 2006/7], with some

special attention given to Drago’s method [Drago et al. 2003]. All implemented models
(Linear, Drago and Drago modified) use compute shaders to calculate statistical values
about the scene (such as max values and average) and uses them to recalculate the
brightness of the scene in another compute shader.

Sources:
● EZG Lecture
● “Realtime HDR Rendering” Luksch 2006/7
● “Adaptive Logarithmic Mapping For Displaying High Contrast Scenes” Drago et al.

2003

Volumetric Smoke (Bubbles)

The volumetric smoke was implemented with an Eulerian grid, where each voxel has a
velocity vector and one additional parameter (pressure) that is later used for the rendering.
The fluid is simulated based on the model presented in [Stam 1999], but several other
publications were useful for more straightforward explanations and implementation details.

The simulation itself takes places in a compute shader and is achieved through several
passes. The rendering is achieved by rendering the front and back faces of a volume and
applying a ray-marching technique through the material.

This effect could however not be implemented to its full capabilities. The fluid simulation
seems to not be working as expected, so a simplified use was found (namely, bubbles
effect). Additionally, the gradients of each voxel are calculated to help improve the looks of
the effect. These, however, seem to be wrong as well. A buoyancy model was not
implemented, which would greatly improve the quality and realism of the simulation [Rideout
2010, Rideout 2011], and a collision model is missing as well [Crane et al. 2007]. It is also
noticeable that the smoke does not take into account the depth buffer of the scene, often
being drawn behind objects where it should be intersecting with them.

Sources:
● “Stable Fluids” Stam 1999
● “Real-Time Simulation and Rendering of 3D Fluids” Crane et al. 2007
● “Simple Fluid Simulation” Rideout 2010

(​https://prideout.net/blog/old/blog/index.html@p=58.html​)
● “3D Eulerian Grid” Rideout 2011

(​https://prideout.net/blog/old/blog/index.html@p=66.html​)

https://prideout.net/blog/old/blog/index.html@p=58.html
https://prideout.net/blog/old/blog/index.html@p=66.html

Particle effects (Fire, Smoke and Rain)

Particles effects are used in our demo to create the effect of fire (with smoke) and rain.
They are created and managed inside a compute shader, where their positions, velocities
and angle are calculated.

For the rendering, the points calculated in the compute shader (stored in a buffer) are
used to create quads in a geometry shader and rendered with textures (for fire and smoke)
or they are used to create blue triangles (for rain).

The smoothing of the particles (“soft particles”) is, however, missing. It was planned to be
implemented as in [Lorach 2007], but was dropped due to time constraints.

Sources:

● EZG Repetitorium
● “Soft Particles” Lorach 2007

Hardware
The demo was tested in the lab environment (VIS LAB) and had an average FPS of over

60. The prototype was also tested in two machines under two GPUs of different
manufactures on Windows 10. The tested GPUs are the following:

● AMD Radeon R5 M330
● NVIDIA GeForce GTX 1050 Ti

Sources
For the C++ and OpenGL code, the following tutorials were followed, and can therefore

share similar code with our prototype:
● Learn OpenGL: ​https://learnopengl.com/
● opengl-tutorial: ​http://www.opengl-tutorial.org/
● TheChernoProject: ​https://www.youtube.com/user/TheChernoProject

For the textures, the following libraries were used:
● Textures.com: ​https://www.textures.com/
● Total Textures: ​https://www.cg.tuwien.ac.at/courses/Textures
● Google

Sources of the models:
● https://archive3d.net/
● https://www.turbosquid.com/
● https://www.cgtrader.com/
● House model tutorial: ​https://www.youtube.com/watch?v=0u1PSx9CcSM

Sources of the sound:
● Some of them were downloaded from ​https://www.youtube.com/
● https://freesound.org/browse/tags/sound-effects/

https://learnopengl.com/
http://www.opengl-tutorial.org/
https://www.youtube.com/user/TheChernoProject
https://www.textures.com/
https://www.cg.tuwien.ac.at/courses/Textures
https://archive3d.net/
https://www.turbosquid.com/
https://www.cgtrader.com/
https://www.youtube.com/watch?v=0u1PSx9CcSM
https://www.youtube.com/
https://freesound.org/browse/tags/sound-effects/

