

Real Time Rendering Submission 2 January 21st, 2019

Seite 1 von 12

A Planet in Ashes - Escaping a Nightmare

Group 42

Bernhard Pointner 01527081

Dominik Scholz 01527434

Story

After an attack by foreigners the planet in our story lies in ashes. The destroyed environment is

shown. It seems like everyone died and there is no possibility to survive on this planet anymore. The

sun sets. There is still one intact spaceship left in the colony. The path to it is dangerous (cringey

overload) but our hero manages to reach the ship and escape the desolate place.

Implemented

 Illumination

 Model/Texture loading

 Free moveable camera

 Advanced scene

 Scene settings loaded via parameters of config file

 Effects

 Audio

 Font/Text Rendering

Keyboard keys

KEY P PLAY/PAUSE Starts/stops the automatic camera movement through
all shots (Video)

KEY RIGHT SCENE SWITCH Switch free-moveable camera to next scene shot

SPACE CAM SWITCH Tabs through all available cameras. The first one is the
simplified path following camera and the second one
the free moveable camera (debug cam).

KEY R RELOAD SHADER Reloads all relevant shaders

KEY C RELOAD CONFIG Reloads the main config file and therefore the whole
scene (kind of restart)

KEY N RELOAD SHOT Reload current active camera shot (scene)

KEY X RELOAD LAYOUT Reload current active layout used by a camera shot

Real Time Rendering Submission 2 January 21st, 2019

Seite 2 von 12

Config settings (Assets/config.json)

width 1920 Set video width

height 1080 Set video height

shadow-resolution 8192 Set shadow map size (higher => more accurate)

brightness-adjust 0.0 Reloads all relevant shaders

fullscreen true Enable/Disable fullscreen mode

auto-start true Enable/Disable auto start of video

audio-enabled true Enable/Disable audio

Inspiration

Source: https://www.artstation.com/artwork/nyaLr

Result

Real Time Rendering Submission 2 January 21st, 2019

Seite 3 von 12

EFFECTS

1) PBR/PBS/BRDF

Description:

We implemented a PBR shader that is inspired by the Disney BRDF shader. We reduced the

parameter to allow for real time usage (metallic, roughness), for that we closely followed the

implementation of the real-time PBR shader from epic games (Unreal Engine). We implemented the

cook-torrance illumination model for the specular term. We also used the skybox for the reflection

of the metallic term. Additionally we baked ambient occlusion maps in substance that are applied to

the shading afterwards. (see main.frag)

Source:

https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf

https://blog.selfshadow.com/publications/s2013-shading-

course/karis/s2013_pbs_epic_notes_v2.pdf

2) MSAA (Multisampling)
Description:

Just as little improvement we used a multisample-framebuffer for the main rendering that gets

blitted to a child buffer (used because our multsample framebuffer is not the backbuffer)

Source:

https://learnopengl.com/Advanced-OpenGL/Anti-Aliasing

https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://learnopengl.com/Advanced-OpenGL/Anti-Aliasing

Real Time Rendering Submission 2 January 21st, 2019

Seite 4 von 12

3) Normal Mapping

Description:

The normal mapping is used for displaying bumps on the terrain. Those bumps reduced the needed

complexity of the geometry of the terrain model => speed increase

Source:

https://learnopengl.com/Advanced-Lighting/Normal-Mapping

4) Heat Distorsion

https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Real Time Rendering Submission 2 January 21st, 2019

Seite 5 von 12

Description:

We implemented a simple heat distortion affect by drawing proxy geometry (called “disorters”) into

a framebuffer attachment. These disorters are used as mask for a displaced lookup from the main

framebuffer. The lookup is displaced by sine curves and a noise texture.

Source:

https://tympanus.net/codrops/2016/05/03/animated-heat-distortion-effects-webgl/

5) Color Grading

https://tympanus.net/codrops/2016/05/03/animated-heat-distortion-effects-webgl/

Real Time Rendering Submission 2 January 21st, 2019

Seite 6 von 12

Description:

We implemented color grading with look-up-tables (LUTs). We used 16x16x16 LUTs like used in the

unreal engine (in contrast to NVidias 32x32x32 because that is used for offline rendering/video

processing). 16x16x16 seemed a good choice to approximate color grading transfer functions (also

because game engines use this size). We used the improved way of uploading a 16x256 pixel 2D-

texture as 3D texture which makes it easy to configure the LUT. The workflow to generate a LUT

looks as follows: make a screenshot of the application using a default LUT (identity) -> apply filter in

a image editing program -> apply the same filters on the LUT image -> upload new LUT image. Our

shot engine also supports interpolation of LUT as two LUT are uploaded to the shader (ss.frag).

Source:

https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter24.html

https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter24.html

Real Time Rendering Submission 2 January 21st, 2019

Seite 7 von 12

6) Depth of Field (currently still under development)

Description:

Depth of Field should have been used for an intro shot where the actor (third) stands far apart from

the space ramp. Therefore, he uses a telescope to take a closer look of the space ramp and the

shuttle. To get a realistic feeling, the effect depth of field should be used to blur the near

environment of the actor and to focus (sharp image) the space ramp from a far distance.

Currently, we implemented all steps until 4.3 of the dof source but we were not able to finish the

effect until the submission deadline. However, anyway this effect was listed as an optional effect in

the effect list of the initial submission document.

Source:

https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field

https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field

Real Time Rendering Submission 2 January 21st, 2019

Seite 8 von 12

7) GPU Fire particles

Description:

The fire effect is implemented as gpu particles. The geometry of the particles is generated in the

geometry shader. The physic of each particle is defined by the compute shader which also calculates

the particle generation. The fragment shader uses a 2D fire sprites texture with many different small

sprites of the fire status in each program sequence.

This effect is a replacement for the motion blur effect mentioned in the initial submission. We think

that this effect fits better to the story respectively is more relevant for realistic feeling. However,

due to the complexity of the effect (GPU, geometry shader, compute shader) a replacement, we

think, this effect is fine as a replacement.

Source:

https://learnopengl.com/In-Practice/2D-Game/Particles

+ lecture slides for compute shader integration

https://learnopengl.com/In-Practice/2D-Game/Particles

Real Time Rendering Submission 2 January 21st, 2019

Seite 9 von 12

8) Range-based Fog

Description:

The used fog is implemented with a squared increase of density dependent on the distance between

the camera position and each vertex.

Source:

http://in2gpu.com/2014/07/22/create-fog-shader

9) Shadow Mapping (directional light)

http://in2gpu.com/2014/07/22/create-fog-shader

Real Time Rendering Submission 2 January 21st, 2019

Seite 10 von 12

Description:

Because our scene is outside any room, directional-based light shadows are used instead of point

shadows. The shadow map is generated in the main framebuffer which draws all objects each scene.

Source:

https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping

10) Skybox

Description:

The skybox is geometry-based and uses a cubemap planes for each face of the cube. Which skybox

each is used by each scene is defined in the configs of layout. Because the layouts changes during

the video, also the skyboxes changes (night -> daylight)

Source:

https://learnopengl.com/Advanced-OpenGL/Cubemaps

Implementation

Scene/Shot Engine

We implemented a data driven approach to organizing our scene in shots (units of camera

movements) and layouts (model arrangements). This allowed for quick debug cycles. The

shots also allow to set shader parameters and even interpolate them. This is used in the

scene, to transition camera positions, camera settings, transistion LUT, rotate skyboxes,

change effects, reposition effects, place disorters,….. everything can be configured on runt-

time by adding/configuring new shit files.

https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://learnopengl.com/Advanced-OpenGL/Cubemaps

Real Time Rendering Submission 2 January 21st, 2019

Seite 11 von 12

Used tools
Visual Studio 2017, Blender (Models), Substance (Textures)

Audio
FMOD SoundClass

• bensound-birthofahero.mp3

Source: https://www.bensound.com/royalty-free-music/track/birth-of-a-hero

Texture
• cam.png

• default_lut.png

• lut.png

• dirt.jpg

• dirt_normal.jpg

• houses_Base_Color.png

• houses_Metallic.png

• houses_Mixed_AO.png

• houses_Normal.png

• houses_Roughness.png

• mobilelauncher_railings_mat_Base_Color.png

• mobilelauncher_railings_mat_Metallic.png

• mobilelauncher_railings_mat_Mixed_AO.png

• mobilelauncher_railings_mat_Normal.png

• mobilelauncher_railings_mat_Roughness.png

• rocket_merged_body_Base_Color.png

• rocket_merged_body_Metallic.png

• rocket_merged_body_Mixed_AO.png

• rocket_merged_body_Normal.png

• rocket_merged_body_Roughness.png

• rocket_merged_bottom_Base_Color.png

• rocket_merged_bottom_Metallic.png

• rocket_merged_bottom_Mixed_AO.png

• rocket_merged_bottom_Normal.png

• rocket_merged_bottom_Roughness.png

• rocket_merged_spaceship_Base_Color.png

• rocket_merged_spaceship_Metallic.png

• rocket_merged_spaceship_Mixed_AO.png

• rocket_merged_spaceship_Roughness.png

• rocket_merged_spaceship_Normal.png

• rover_merged_Adds_Base_Color.png

• rover_merged_Adds_Metallic.png

• rover_merged_Adds_Mixed_AO.png

https://www.bensound.com/royalty-free-music/track/birth-of-a-hero

Real Time Rendering Submission 2 January 21st, 2019

Seite 12 von 12

• rover_merged_Adds_Normal.png

• rover_merged_Adds_Roughness.png

• rover_merged_body_Base_Color.png

• rover_merged_Body_Metallic.png

• rover_merged_body_Mixed_AO.png

• rover_merged_Body_Normal.png

• rover_merged_Body_Roughness.png

• terrain_side.png

• terrain_normal.png

• terrain_top.png

• cubemap

• cubemap1 – NASA images

Models
• hirise1.fbx (Terrain) – NASA HiRise data

• hirise2.fbx (Terrain) – NASA HiRise data

• houses.fbx (Space houses) – Modelled & Textured by Dominik Scholz

• ramp.fbx (Space ramp) – NASA public model, textured by Dominik Scholz

• rocket_merged.fbx (Space rocket) – Modelled & Textured by Dominik Scholz

• rover_merged.fbx (Space rover) - Modelled & Textured by Dominik Scholz

Libraries and sources

[1] Assimp, http://assimp.sourceforge.net/

[2] OpenGL, https://www.opengl.org

[3] GLFW, http://www.glfw.org

[4] GLEW, http://glew.sourceforge.net

[5] DeviL, http://openil.sourceforge.net

[6] FreeType, https://www.freetype.org

[7] Sound FMOD, https://cuboidzone.wordpress.com/2013/07/26/tutorial-implementing-fmod/

http://assimp.sourceforge.net/
https://www.opengl.org/
http://www.glfw.org/
http://glew.sourceforge.net/
http://openil.sourceforge.net/
https://www.freetype.org/
https://cuboidzone.wordpress.com/2013/07/26/tutorial-implementing-fmod/

