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Controls

• R to restart the animation

• C to switch to a debug controller: move around with WASD and
mouse

• Space to pause the animation

• Q or ESC to quit
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Effects

The scene builds on the engine developed in SS 2018 for the CG Lab course,
which already implements PBR-shaders, normal mapping, and a physics en-
gine.

New effects implemented for this course are:

• Deferred lighting

• Image based lighting

• Dynamic cubemaps, parallax corrected reflections

• SSDO

• Light shafts

• Bloom

• HDR and Tonemapping

Deferred lighting

Deferred lighting happens in two stages: first the G-Buffer gets filled, lighting
gets applied second. The G-Buffer consists of four render targets: position,
normals, albedo, and one render target for metallic (r-channel) and roughness
(g-channel).

Dynamic cubemaps, parallax corrected reflections

A reflection probe is essentially a dynamic cubemap with a defined bounding
box. Every object inside this bounding box uses the probe’s cubemap as
reflection and lighting source. (You can see the soft edges of the probes in
the scene!)

Cubemaps represent an environment at infinite distance, which is un-
wanted for local reflections. By specifying a bounding box however it is pos-
sible to offset the reflection vector so that reflections look correct for local
areas [6].

There are three dynamic reflection probes in the scene, each with a cube-
map resolution of 256. Due to performance reasons we update only one
probe per frame. We don’t use the full deferred pipeline for this update, but
a simple forward renderer with a very basic illumination model.
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Figure 1: G-Buffer

Figure 2: Dynamic reflections
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Image based lighting

Skybox and reflection probes serve as the source for environmental lighting.
Normally you would filter the cubemaps with a BRDF to generate irradi-

ance and radiance maps [5] [7]. We instead rely on a simple hack [9]: we use
the highest mipmap level as an irradiance map, and for specular reflections
select the mipmap level based on roughness.

SSDO

For the ambient occlusion effect in our demo we implemented the technique
described by Ritschel et al.[12], which is designed to work with image based
lighting models like the one our demo uses. We use 64 pairs of sample
directions and sample lengths with a maximum radius of 0.2. To reduce the
banding artifacts produced by using the same samples for each pixel we use
a rotated sample kernel and blur the result of our SSDO pass as described in
the LearnOpengl SSAO tutorial[2] and by Ritschel et al.[12]. By this we get
4 * 64 sample sets. We use only 4 different sets so that the blurring step that
is used to get rid of the noise pattern produced by reusing the same rotation
pattern in every 4x4 pixel block is not too strongly visible. Our SSDO step
replaces our diffuse lighting contribution in the previous lighting pass and is
best visible in the corners of the walls surrounding the bunny.

Ritschel et al.[12] also describe how the technique could be used in a
second rendering pass to implement an indirect bounce of light coming from
a blocking fragment that is visible in the shadows produced in the first pass.
We also implemented this second step but took it out in the end, because it
was barely visible.

Light shafts

Initially we wanted to implement light shafts using the screen space tech-
nique described by Mitchell[8], but finally went with the ray marching based
technique described in the revision course[3]. We use a shadow map pro-
duced by a single directional light that is positioned approximately at the
sun’s position in the skybox. As described in Realtime Rendering[1], we use
three color channels for our medium as well as for the light’s color to have
more control over the visible outcome of the effect. Our rays are configured
to use a step size of 0.1. As described in the revision course[3] and this blog
post by Angelo Pesce[10] we downsample our gBuffer to have the resolution
used in the other steps using a checkerboard pattern. When upsampling the
result back to full resolution we always pick the sample where the total in
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Figure 3: SSDO

depth to the center of the full resolution texture is lowest. Additionally we
use a uniform value to control the strength of the volumetric light in the final
image.

Bloom

The basic algorithm is described in [4]. Pixels above a certain threshold get
rendered to a texture, this texture gets blurred in two passes (horizontally
and vertically). A final pass then blends this texture onto the final scene.

We had problems with single bright pixels, causing the bloom to flicker
heavily. We eliminate those single pixels by applying a median filter.

HDR and tonemapping

The skybox uses HDR textures and therefore drives all the HDR lighting in
the scene.

The tonemapping algorithm is equation 4 from Reinhard’s paper [11] and
happens in two passes: the luminance for each pixel is rendered into a texture,
this texture then gets mipmapped and we can sample the average luminance
of the scene from the lowest mip-level.

We do all our lighting calulations in linear space and convert back to
gamma as a last step. Textures are converted from sRGB to linear on load.
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Figure 4: Bloom and light shafts

Misc information

The demo was tested on NVIDIA graphics card.
The whole scene was created in Blender, including camera animation

(based on splines, baked before export). Additional source for models and
textures was the Unity Asset Store.

Used libraries

• Assimp
FBX loading, http://www.assimp.org/

• FMOD
Audio, https://www.fmod.com/

• FreeImage
Loading images, http://freeimage.sourceforge.net/

• PhysX
All physics related stuff, https://developer.nvidia.com/physx-sdk
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