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IMPLEMENTATION

 APIs: OpenGL 3.3. (using GLEW and GLFW)

 Illumination model: Phong lighting model was implemented

 Textures:  We are using diffuse textures, as well  as normal-maps and specular-

maps to provide a three-dimensional impression.

 Camera:  The  animated  camera  we  are  using  is  implemented  by  linearly
interpolating  between  keyframes.  Each  keyframe  has  a  certain  timestamp  and
position, at which the camera should be when the timestamp is reached. We chose
this  approach over  animation  with  curves,  such  as  b-splines  or  hermite-curves,
because it gives the impression of an interior design showreel, which fits our demo
the  best.  At  the  end  of  the  animated  camera-tour,  the  camera  automatically
switches to debug-mode, which means that it is freely movable. It is also possible to
end the animated tour early by pressing the X-key.  The controls for the debug-
camera are as follows:

Controls:

 W: Move forward

 S: Move backwards

 D: Move to the right

 A: Move to the left

 Mouse: Looking around

 Scene elements: The scene has changed a lot compared to the first submission,
while  keeping  all  relevant  elements.  The  aim was  to  present  a  bigger,  modern
bathroom when compared to  the  prototype-model.  If  features white  tiles  on  the
walls, a checkerboard-pattern on the floor and a doorframe painted in blue, where
the effects of the different texture maps can be observed. Besides the broad mirror,
which is also a central element of the scene, there are three different water outlets
that  can  be  turned  on  to  activate  the  water  flow,  which  is  implemented  using
particles. Various objects, such as the toilet bowl, act as shadow casters to display
the impact of omni-directional shadow-mapping. The bloom effect can be noticed on



any surface with high specular reflection.

The  bathroom  model  was  created  in  Maya  from  scratch  and  no  external  or
prefabricated models were used.

ADDITIONAL LIBRARIES

 OpenGL Mathematics (GLM)

Glm.g-truc.net. (n.d.). OpenGL Mathematics. [online] Available at: https://glm.g-
truc.net/0.9.8/index.html [Accessed 25 Nov. 2018].

 Open Asset Import Library (Assimp) for loading models into our scene

Assimp.org. (n.d.). The Open-Asset-Importer-Lib. [online] Available at: http://assimp.org/ 
[Accessed 25 Nov. 2018].

 STB_IMAGE for loading Textures

Barrett, S. (2018). nothings/stb. [online] GitHub. Available at: 
https://github.com/nothings/stb/blob/master/stb_image.h [Accessed 25 Nov. 2018].

Source Code for Shader.h, Model.h and Mesh.h was taken from a web tutorial, as it will
remain mostly unchanged.

Shader.h:

de Vries, J. (n.d.). LearnOpenGL - Particles. [online] Learnopengl.com. Available at 
https://learnopengl.com/code_viewer_gh.php?code=includes/learnopengl/shader.h 
[Accessed 25 Nov. 2018].

Model.h:

de Vries, J. (n.d.). LearnOpenGL - Particles. [online] Learnopengl.com. Available at 
https://learnopengl.com/code_viewer_gh.php?code=includes/learnopengl/model.h 
[Accessed 25 Nov. 2018].

Mesh.h:

de Vries, J. (n.d.). LearnOpenGL - Particles. [online] Learnopengl.com. Available at 
https://learnopengl.com/code_viewer_gh.php?code=includes/learnopengl/mesh.h 
[Accessed 25 Nov. 2018].



IMPLEMENTED EFFECTS

Planar reflection using the stencil-buffer

Figure 1: The stencil-buffer is used to create a planar reflection of the bathroom-scene in the mirror on the left wall.

The big mirror on the left wall of the bathroom shows a reflection of the scene, including
shadows. To achieve this impression, the scene is rendered twice and the stencil-buffer is
used to keep the part of the reflected scene, which is covered by the mirror, from being
drawn over by the wall behind the mirror. For mirroring the scene, we chose the approach
of reflecting the scene, as opposed to reflecting the eye-point,  across the xy-plane by
scaling and translating the model-matrix accordingly. This reflection, however, changes the
winding direction of the triangles of the model, which is why front-faces have to be culled
instead of back-faces in the reflected scene. After drawing the reflected scene, which also
includes rendering it into the omni-directional shadow-map, the mirror-polygon, which is a
plane parallel to the xy-plane, is drawn into the stencil-buffer. It is important to not draw it
into the color buffer, as this would inevitably overdraw the reflected scene. The values in
the stencil buffer keep the pixels, which are covered by the mirror-polygon, from being
overdrawn as the original scene is rendered in the final step.

Sources:
https://www.opengl.org/archives/resources/code/samples/advanced/advanced97/notes/node90.html
https://open.gl/depthstencils



Bloom

Figure 2: Left: Screenshot of the sink without bloom. Right: Activating the bloom effect adds a glowing impression to 
bright parts of the scene, such as the water-particles and the specular highlight at the edge of the sink.

The effect of bloom is used to give very bright areas of the rendered image a glowing
impression. To achieve this, several steps have to be taken. As bloom is considered a
screenspace-effect,  the scene is not  rendered to the display directly,  but rather into a
texture.  This  texture  is  then  modified  using  image-processing  techniques  and  finally
rendered onto a plane in screen-space.

To achieve the desired result, we had to create new framebuffer-objects, the first of which
has two color-buffers attached. This allows us to produce two output-images in just one
render-pass by adjusting the layout locations of the used fragment shader. While the main
image of the scene is rendered to the FBO's first  color-buffer  without  any change,  an
additional  image is  drawn to  the second color-buffer.  This  image contains only pixels,
which are above a certain brightness-threshold, while all others stay black.

In the next step, this brightness-image is blurred using two FBOs, which alternately render
into each others attached textures. By doing this, we follow the approach presented in the
lecture of seperating a Gaussian blue kernel into two smaller kernels, where one is blurring
the brightness image in horizontal and one in vertical direction. The last step is rendering
the final image to a screen-space plane. This is done by using a shader, which takes the
original scene and the blurred brightness-image as texture input and combines them into
one final output image.

In our Demo, the effect is noticeable on any bright spots, such as the specular highlights in
the tub or the water coming out of the outlets.

Sources:
Lecture Slides: Screenspace Effects (2018 W)
https://learnopengl.com/Advanced-OpenGL/Framebuffers
https://learnopengl.com/Advanced-Lighting/HDR
https://learnopengl.com/Advanced-Lighting/Bloom



Normal Mapping

Normal mapping is implemented to give surfaces a huge boost in detail  by using per-
fragment normals. These per-fragment normals are stored in a normal map that is being
passed to another texture sampler in the fragment shader. Since a normal obtained from a
normal  map is  in  the range [0,  1],  it  has to  be remapped to  the range [-1,  1]  before
proceeding with the lighting calculations. 

Because these normal vectors from the normal maps are in tangent space, we need a
matrix to transform them into world space.  This matrix,  also called the TBN matrix,  is
constructed  by  using  the  tangent,  bitangent  and  normal  vector.  Instead  of  manually
calculating  the  tangent  and  bitangent  vectors,  we  are  making  Assimp calculate  these
vectors for us. After that, we pass only the normal and the tangent vector to the vertex
shader. The bitangent vector can be calculated be taking the cross product of the normal
and tangent vector. All three vectors are then transformed into world space by multiplying
them with the model matrix. The three vectors are then combined into the TBN matrix and
then passed to the fragment shader. The sampled normal in the fragment shader is then
transformed from tangent space into world space using the TBN matrix.

Sources:
https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Instancing

To simulate the water coming out of the tap, instancing was used to draw thousands of
water particles. Each water particle is a small light-blue sphere with a little transparency.
For all three taps in the scene we have in total 9550 particles, where each particle has its
own model matrix and all  model  matrices for all  particles are stored in a single array.
Before entering the game loop, the positions of each of these particles is set in its desired
position.  In the game loop the model matrix of each particle is updated and with each
iteration of the game loop every particle is translated in the -y direction by a certain value.
If a particle passes beyond a certain y-value, which is different for each simulation, the
particle  is  teleported  back  up  to  defined  position,  which  is  also  different  for  each
simulation.  

We use instanced arrays, which is a vertex attribute, to store the model matrices of the
particles.  In  order  to  do  that,  we store the content  in  a  vertex buffer  object  and then
configure its attribute pointer. Because the amount of data allowed as a vertex attribute
cannot be greater that vec4 and we have to pass in a mat4, which is four times greater
than vec4, we use 4 vertex attributes. In our implementation we use the locations 2,3,4
and 5 for the model matrices. In the end we configure each of them as instanced arrays by
calling glVertexAttribDivisor.

In the game loop, after updating all  model  matrices, we also update the vertex buffer
object with the new model matrices and finally call glDrawElementsInstanced to draw the
particles.

Sources:
https://learnopengl.com/Advanced-OpenGL/Instancing



Omnidirectional shadow mapping

In order to simulate shadows, we initially have to generate a depth map from the light’s
perspective.  In our case, a cube map (which will be attached to a framebuffer) with six
faces will contain the depth map for the shadow calculation. To avoid rendering the scene
six times to create the depth cube map, we use a geometry shader to reduce the number
of rendering passes to only one. 

We will need a light space transformation matrix to transform the world around the light
source to six different light spaces, one for each direction of the light and each face of the
cube map. For the light space transformation matrix,  we need a perspective projection
matrix, which will stay constant for all six directions, and six distinct view matrices for each
direction. In total, we will have six light space transformation matrices, one of which can be
acquired by multiplying the projection matrix with one of the six view matrices.

The  calculated  transformation  matrices  are  then  passed  to  the  geometry  shader  to
transform the world-space vertices to six different light spaces. After that, the fragment
shader takes the fragment position from the geometry shader as input and then calculates
the distance between the fragment and the light source and maps the result to [0, 1], which
corresponds to the fragment’s depth value. The result of this first render pass gives us a
complete depth cube map that we can then pass to our main fragment shader, which is
responsible for rendering our actual scene. 

In the fragment shader we calculate a new depth value between the current fragment and
the light source and then compare that value with the one sampled from the depth cube
map. This way we can determine if our current fragment is in shadow or not. 

Additionally, percentage-closer filtering (PCF) was implemented to smooth the edges of
the shadows. To get rid of shadow acne, we include a shadow bias of 0.2. The depth map
resolution is set to 1024 x 1024.

Sources:
https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://learnopengl.com/Advanced-Lighting/Shadows/Point-Shadows



ADDITIONAL INFORMATION

Starting the application:

The Demo can be started from the command-line like this:

Bath-Demo.exe 1920 1080 1

where the first two parameters are the resolution of the window and the third parameter 
indicates, whether or not the application should be started in fullscreen mode. If the 
application is started without any parameters or just by double-clicking the .exe-file, it is 
started in windowed mode with a default resolution of 1920x1080.

Additional Controls:

In addition to the debug-camera controls, the following buttons are used:

X – end animated camera-tour and enter debug-mode
B – turn bloom on/off (only available in debug-mode)
T – activate water outlet at the sink
U – activate water outlet in the bathtub
I – activate shower

Lab Test:

The demo has been tested in the lab using the Nvidia Graphics Card on the AMAROK PC,
where it successfully ran at 120 frames per second.
It has been developed at home using a GTX 1060 Card.
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