
Rendering Demo - Documentation 

Story 
The demo will take place within a single, large room. The idea is to keep the camera static 
initially and demonstrate the impact of various effect on the environment (perhaps with a 
variable degree of details). The room will be mostly lighted through a couple of point lights and  
Spot lights, these lights can also move. 
Later, the camera will wander around the room and zoom in or rotate around existing objects to 
show the impact of various effects. 
Another idea is to gradually add or remove effects during the demo to emphasize the impact of 
each separately. 

Effects 
The visual style of our demo will be comic or drawn like. To achieve this we use a hatching 
technique proposed by Bert Freudenberg in the Paper “Real-Time Halftoning: A Primitive For 
Non-Photorealistic Shading” [1], which was further explained in his thesis. There are also 
several other papers describing such techniques. We will also use indication maps, that show 
how visually important a portion of a model is. We will use the pipeline used in the paper 
“Real-time 3D rendering with hatching” [2]. This paper provides an illumination model and an 
automatic way to generate tonal art maps, which are the basic textures used for this style. To 
generate the tonal art maps following general steps are needed. First, characteristic information 
of a texture is extracted to produce a directional field. From this stroke trajectories are computed 
and from this a tonal art map is produced that satisfies some consistency constraints. 
To further enhance the atmosphere we will use shadow maps for all important lights, moreover 
we plan to implement some post-processing effects, such as bloom, god-rays and contouring, 
as seen in the lecture. The contouring will be done by detecting edges in the normals and depth 
values in screen-space. In GPU Gems a simple post process effect for god rays is explained [3]. 

Implementation 
For the hatching effect, we used a python program to generate the tonal art maps. This extracts 
with canny edge detection edge orientations. This is than interpolated for the whole texture 
using bottom up midpoint displacement[4]. Then using this direction field we generate strokes 
along these directions. One can set the number of control points and the displacement between 
control points. 
The so generated textures are loaded into a texture array. In the shader we access the correct 
tone and fetch the corresponding texel. We used 32 tones per texture. In the shader the diffuse 
part of the phong illumination model is calculated. We then use this term multiplied by the 



number of tones to get the texture corresponding to the tone of the fragment, because this 
correspond to the index of the tone in the texture array. 
We also implemented shadows with depth maps. We did this for spotlights and pointlights. The 
depth value of a pixel from the point of view of the light is saved into a texture. This value is than 
used to check if a fragment is in light or shadow. The depth maps for the point lights are 
generated with a geometry shader that outputs the depth value from the point of view of the light 
into a cubemap. We use a geometry shader, because we can then write into all 6 faces of the 
cubemap in one pass. 
The main pass of our pipeline renders the scene without effects, the scene with effects, the 
normal and the depth value into separate multisample textures.  
Additionally we use transform feedback buffers for a particle system that is attached to spot 
lights and once active emits particles from the spot light’s source. 
Volumetric lights are made based on the VU slides along with many performance optimizations 
and tweaks added by us. We managed to get good performance on GPU without the need for 
downsampling. 
In a next step we calculate contours by using a sobel filter and laplacian filter on the depth value 
and normal vectors of the scene. This detects discontinuities which correspond to places where 
a contour should be drawn. These are rapid changes in depth or normal. 
 
The result of these passes are all written into different textures using different fbos of which the 
end result is blended in an additional shader. 
 
We implemented sound with the irrklang library. 
 
Unfortunately at the end, it appears that our demo is CPU bound and we are losing performance 
there. The issue was simply spotted once all the calculations for the demo were added in, which 
meant it is too late to add appropriate multi threading support. 
 

Libraries 
Opencv - texture generation 
Assimp - model loading 
Stb_image - texture loading 
Irrklang - sound 

Models 
Models were taken from the internet from cgtrader. We found a nice asset pack there.   1

The models were then imported into blender and linked with the right textures where also the 
scene was modeled. The tonal art maps were generated with a self written python program. 

1 https://www.cgtrader.com/items/636835/download-page 



 

Controls: 
F2 - switch to debug cam 
F6 - increase brightness 
F7 - decrease brightness 
 
Tested on Nvidia 

Bibliography 
[1] Bert Freudenberg, Maic Masuch, and Thomas Strothotte. 2002. Real-time halftoning: a 
primitive for non-photorealistic shading. In Proceedings of the 13th Eurographics workshop on 
Rendering (EGRW '02), Simon Gibson and Paul Debevec (Eds.). Eurographics Association, 
Aire-la-Ville, Switzerland, Switzerland, 227-232. 
[2] Suarez, J., Belhadj, F., & Boyer, V. (2016, 04). Real-time 3D rendering with hatching. The 
Visual Computer, 33(10), 1319-1334. doi:10.1007/s00371-016-1222-3 
[3] Kenny Mitchell.  Volumetric Light Scattering as a Post-Process. GPU Gems 3. Chapter 13. 
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch13.html 
[4]​Belhadj, F. (2007, October). Terrain modeling: a constrained fractal model. In ​Proceedings of 
the 5th international conference on Computer graphics, virtual reality, visualisation and 
interaction in Africa​ (pp. 197-204). ACM. 
 
 

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch13.html

