
EZG18-Museum

Implementation
In our demo the camera flies through a museum room filled with antique artefacts. The only light

source is a glowing ball of particles that is chased by the camera. As the ball comes near a wall a

portal opens to another wall of the museum and the camera may fly through this portal. The sides of

the portals are enhanced with another particle system. As the camera follows the glowing ball you

can see parallax mapping on the walls and the floor of the museum. When the animation reaches its

end, it automatically starts from the beginning again.

All the animations, including the camera, have been done in Blender and are imported with the

assimp library using the collada file format. For the smooth camera movement Catmull- Rom splines

are used for keyframe interpolation in our engine.

Libraries
For the object loading we are using assimp (http://www.assimp.org/).

For loading textures, we use FreeImage (http://freeimage.sourceforge.net/).

Since we use our own physics, we do not have a library for that.

Effects
We implemented parallax mapping, particle systems, skeletal animations and portals.

Parallax Mapping
Parallax Mapping was implemented according to the tutorial by LearnOpenGL:

https://learnopengl.com/Advanced-Lighting/Parallax-Mapping

The first step in parallax mapping is the calculation of the tangent space. For this we calculate the

tangent vector for each vertex of our models once right after they were loaded. Since the bitangent

vector is just the dot product between the vertex normal and the tangent vector, we calculate it in

the vertex shader, so we don’t have to send it to the graphics card all the time.

In the fragment shader, we transform the necessary vectors to tangent space and calculate the

texture offset according to the height map.

Particle System
We used the slides from the lecture as a basis to build our particle system. LectureSlides: Particle

Systems with Compute & Geometry Shader. In addition we added controls for emitters and

attractors in the compute shader to get more control and to make more complicated effects

possible. For the portal particle system, the particles are emitted on the border line of an ellipse

defining the portal border and are attracted to the center of the portal. They have a short lifetime so

that they don’t make it all the way to the center of the portal. The glow ball particle system only has

one attractor in the center and no emitters. The particles live forever and are only spawned once in

the beginning. The initial spawning position of each particle is chosen based on three random

samples of a Gaussian distribution using one sample for each dimension.

http://www.assimp.org/
http://freeimage.sourceforge.net/
https://learnopengl.com/Advanced-Lighting/Parallax-Mapping

Skeletal Animation
We have implemented linear vertex skinning on the GPU as described by Kavan et. al

https://dl.acm.org/citation.cfm?id=1230107. We have rigged the Buddha statue and made a simple

skeletal animation for it in Blender. The skeleton and animation data is loaded with assimp. The final

transformation for each bone is computed for every frame on the CPU recursively along the skeletal

hierarchy. The transformations are then passed to the vertex shader via uniform matrices for

rendering.

Portals
The portals have already been implemented before starting this course and no external sources

(except from being inspired by playing the game Portal) have been used for this purpose. In a

nutshell, the scene is rendered multiple times, once for each portal depth level. For this purpose, the

camera’s view matrix is computed for each depth level by transforming it according to how the

portals are connected with each other. Then, the scene is rendered from back to front using the

previously computed view matrices. This requires an additional depth map, as no geometry nearer

than the portal of the current depth level should be rendered. To make the rendering more efficient,

frustum culling has been implemented. For portal rendering, the frustum for each depth level is only

a small fraction of the original view frustum and it is adjusted so that it tightly matches the portal

from the previous depth level to avoid drawing unnecessary geometry.

Tools
In our scene, the room (walls, floor, ceiling) and the outside (gras, pebbles) have been created by us

using Blender. We used textures from https://www.wildtextures.com/. All the museum artefacts are

models we got from the following websites: https://free3d.com/ https://www.turbosquid.com/

https://www.cgtrader.com/free-3d-models. For parallax mapping we needed normal and height

maps. These were generated using the online tool provided by http://cpetry.github.io/NormalMap-

Online/ and adjusted by using Gimp https://www.gimp.org/.

Controls
1 – switch rendering of portals on/ off

2 – switch between parallax mapping and Blinn-Phong shader

Right Arrow – fast forward animation 1,5 seconds

Left Arrow – rewind animation 1,5 seconds

P – stop/ start camera animation

C – switch between animation/ debug camera

WASD + Mouse – movement of debug camera in the usual first person style

There is an additional configuration file (config.cfg) where the screen resolution, brightness and

gamma correction can be adjusted.

Graphics card
We tested our project on NVIDIA.

https://dl.acm.org/citation.cfm?id=1230107
https://www.wildtextures.com/
https://free3d.com/
https://www.turbosquid.com/
https://www.cgtrader.com/free-3d-models
http://cpetry.github.io/NormalMap-Online/
http://cpetry.github.io/NormalMap-Online/
https://www.gimp.org/

