
Demoname: Brechpunkt 
 
Gruppe 10 
Thomas Koch - 01526232 
Felix Kugler - 01526144 
 
Tested on AMAROK, NVIDIA GTX 1060. 

Libraries 
GLFW [1], GLEW [2], GLM [3] are used. Most of the geometry is loaded from obj files via 
tinyobjloader [4]. stb_image [5] is used to read textures i.e. the normal texture of the ground 
plane. BASS [6] is used for music playback and for performing a FFT which is used to 
animate the colored cubes. 

Effects 

SSDO 
Point lights placed at each cube surrounding the scene illuminate the scene. A simple phong 
shading model is used for this. Additionally, an environment map with all emitting meshes is 
rendered and blurred. Screen-Space Directional Occlusion [7], which samples the 
environment map, has been implemented. The depth buffer is scaled down to a fourth of its 
size on both dimension before being sampled to increase memory throughput. Sample 
selection uses a dithering pattern created with Halton sequences. By sampling the 
environment map during AO calculation, emitting meshes cause correct soft-shadows. This 
is especially visible between the eight blocks in the center of the scene. Afterwards, a 
selective gaussian blur is performed on the calculated lighting to remove noise. 

Depth of Field 
The depth of field effect is separated into a horizontal and a vertical pass, and is thereby 
able to compute large radii efficiently. This is based on the approach by McIntosh et al. [8]. 
By using a signed circle of confusion, which has negative radii for objects in front of the 
focus, these objects correctly bleed into the focus. 

Normal Mapping 
Normal textures have been created using GIMP and Blender. Textures from textures.com 
have been used. The values of the texture is transformed into view space using the surface 
normal, tangent and bitangent vectors [9]. Normal maps are used for the cracks on the floor 
tiles. 



Screen-Space Reflections 
Screen-space reflections have been implemented similar to [10]. For each pixel a reflection 
vector is ray-marched using a fixed step size. The ray is tested for intersection with the depth 
buffer. Due to the fixed step size, small detail can be missed. Therefore, a binary search is 
executed in order to get a more accurate intersection point. 

Refractive (Glass) Objects 
Refractive objects have been realized according to [11, 12]. In order to refract a ray through 
an object, the exiting position of the ray has to be approximated. To do this, depth peeling 
(culling the front face) is used. Additionally, the point on the mesh directly behind the face 
along its normal, the intersection point of a ray along the negative normal, is pre-calculated. 
The models are created using Blender and exported as VBO using an addon written in 
Python. When a model is exported using our addon, the pre-calculation takes place. 

Bloom 
The bloom effect uses a simple separated gaussian blur. ~64 pixel are sampled horizontally 
and vertically. It is applied at half the resolution of the rendered scene. [13] 

GPU Particles 
A compute shader performs very simple Newtonian physic simulation. Instanced rendering is 
used to draw them. Particles are spawned with an initial force and air resistance is simulated 
in the compute shader until the particles come to a stop. A ring buffer is used such that old 
particles are overwritten when new ones are added. 

Cube Mapping 
Part of the scene is rendered into a cube map before the main forward pass. A geometry 
shader is used to copy each primitive into the 6 different sides of the cubemap to render all 
sides at once. [14] 

Anti-Aliasing 
For performance and simplicity all shading, including ambient occlusion and reflections, is 
performed without anti-aliasing. A texture holding primitive ids is rendered with the main 
forward pass. After all shading and DOF has been performed a second forward pass mixes 
the non-anti-aliased color according to the primitive ids in a multisampled pass. Unlike FXAA 
this results in correctly filtered edges. As the geometry of the scene is simple this step is 
cheap. By performing this step after DOF, the silhouette of objects in focus is correctly 
filtered as well. 



Tools 
Blender was used to create and position the cube objects and the floor tiles, as well as to 
edit and export the Stanford models. An addon for Blender has been developed in Python to 
export glass objects directly in the format we use in VBOs, as these need pre-calculated 
vertex attributes (the opposite position, see above). 

Models 
The Stanford Dragon [15] and the Stanford Lucy [16] model have been used. All other 
models (the colorful cubes, the four center cubes and the ground plane) have been modeled 
in Blender. 

Controls / Arguments 
Without any arguments, the demo starts in windowed mode with resolution 1920x1080. 

● F1 toggles music playback. 
● F2 toggles the free camera, which can be moved with the mouse and WASD keys. 
● The left and right arrow keys can be used to rewind and fast-forward the animation 

respectively. 
● --fullscreen ​ to start the demo in fullscreen 
● --WIDTHxHEIGHT ​ to start the demo in windowed mode with specified resolution e.g. 

"​--1920x1080" ​. 

References 
[1] ​https://www.glfw.org/ 
[2] ​http://glew.sourceforge.net/ 
[3] ​https://glm.g-truc.net/ 
[4] ​https://github.com/syoyo/tinyobjloader 
[5] ​https://github.com/nothings/stb/blob/master/stb_image.h 
[6] ​http://www.un4seen.com/ 
[7] Ritschel, Tobias, Thorsten Grosch, and Hans-Peter Seidel. "Approximating dynamic 
global illumination in image space." ​Proceedings of the 2009 symposium on Interactive 3D 
graphics and games​. ACM, 2009. 
[8] McIntosh L., Bernhard E. Riecke, and Steve DiPaola. "Efficiently Simulating the Bokeh of 
Polygonal Apertures in a Post-Process Depth of Field Shader." ​Computer Graphics Forum​. 
Vol. 31. No. 6. Oxford, UK: Blackwell Publishing Ltd, 2012. 
[9] Lecture slides 2018, Shading, pages 33-38 
[10] 
https://sakibsaikia.github.io/graphics/2016/12/26/Screen-Space-Reflection-in-Killing-Floor-2.
html 

https://www.glfw.org/
http://glew.sourceforge.net/
https://glm.g-truc.net/
https://github.com/syoyo/tinyobjloader
https://github.com/nothings/stb/blob/master/stb_image.h
http://www.un4seen.com/
https://sakibsaikia.github.io/graphics/2016/12/26/Screen-Space-Reflection-in-Killing-Floor-2.html
https://sakibsaikia.github.io/graphics/2016/12/26/Screen-Space-Reflection-in-Killing-Floor-2.html


[11] Wyman, Chris. "An approximate image-space approach for interactive refraction." ACM 
transactions on graphics (TOG) 24.3 (2005): 1050-1053. 
[12] Wyman, Chris. "Interactive image-space refraction of nearby geometry." Proceedings of 
the 3rd international conference on Computer graphics and interactive techniques in 
Australasia and South East Asia. ACM, 2005. 
[13] Lecture slides 2018, Screenspace effects, pages 7-11 
[14] Lecture slides 2018, Shading, pages 8-13 
[15] ​http://www.mrbluesummers.com/3572/downloads/stanford-dragon-model 
[16] ​https://www.thingiverse.com/thing:41939 
 

http://www.mrbluesummers.com/3572/downloads/stanford-dragon-model
https://www.thingiverse.com/thing:41939

