
Still a better love story than twilight
RTR WS2017

Ulrik Schremser (00728034)
Patrick Mayr (01226745)

January 15, 2018



1 Remarks

The demo should work on AMD as well as on NVIDIA GPU. Just execute ’Journey.exe’.
Settings can be adjusted in ’Journey.exe.config’.

Development Status: Plan.

2 Implementation

For the implementation, C# with OpenTK was used. For storing and using models,
GameObject instances are used that hold instances of Model as well as key-frame anima-
tions baked into the .dae files the engine uses. A Model can have multiple meshes and
is rendered by our rendering pipeline. To further instruct the shaders on how to process
the meshes, each model has an integer used for bit flags, enabling the shader to decide
on how to process a specific model (e.g. only render the texture instead of doing full
shading).

2.1 Cameras & Movement

As mentioned earlier, camera and object movements can be baked into the scene via
keyframe animations. This enables us to model the camera- and object paths directly
in Blender. Depending on the scene we use either a single camera or two cameras and
split screen to render the scene simultaneously for every one of the protagonists of our
demo.

2.2 Texture Mapping

Every GameObject stores the Model which got imported from a .dae-file by using
AssimpNet. Model is the representation of an imported model and holds e.g. the mesh
data in Mesh for a regular game object. Mesh stores the textures and its vertex data
using Texture respectively Vertex.
RenderingPipeline respectively its passes, which are subtypes of AbstractRenderPass,

will finally pass the texture and vertex data to the shader to do the texture mapping. The
vertex shader passes the UV data straight through to the fragment shader, which will get
the color data from the texture per fragment using the GLSL function texture(Texture,

UV).

2.3 Simple lighting and materials

See Illumination and Texturing [4]

2.4 Controls

The controls for the demo are the following.

2



Key Effect

ESC quit demo

2.5 Effects

2.5.1 Glow

1. RenderPass1 with its shaders pass1.vert and pass1.frag is creating the glow
source texture and renders the scene in another color texture.

2. RenderPass2 with its shaders pass2.vert and pass2.frag filters the glow source
texture vertically using a 1x64 gauss kernel.

3. RenderPass3 with its shaders pass3.vert and pass3.frag filters the glow source
texture horizontally using a 64x1 gauss kernel.

4. RenderPass4 with its shaders pass4.vert and pass4.frag is finally blending
the color texture with the blurred glow source texture scaled by a glow intensity
factor. Furthermore we using a max function on this effect to avoid that the objects
center is brighter than the border. Finally we spread the excess of the color before
clamping it.

2.5.2 Environment Mapping

In RenderPass0 the scene is rendered using a so-called CubeMapCamera. That means,
for each object which should get an environment mapping, the scene is rendered for
every one of the principal axis +X, -X, +Y, -Y, +Z, -Z, by changing the view matrix
according to the axis. For performance reasons the shaders pass0.vert and pass0.frag

for creating the environment map are using only the diffuse texture information and no
further effects or illumination. The resulting cube map is then used in RenderPass1
with its shaders pass1.vert and pass1.frag to texture the objects, which should get
an environment mapping, by calculating an reflection vector and using it to get the
proper texture information.

2.5.3 Parallax Occlusion Mapping

For Parallax Occlusion Mapping, we need to transform the vertex, camera and light
position to tangent space. Therefore, normals and tangents are provided by the model
and the bitangent vector is calculated on the fly by using the cross product in pass1.vert.
These vectors, then can be used to build the TBN matrix which is able to transform the
mentioned positions to tangent space. In pass1.frag these positions are used to al-
ter the original UV coordinates by performing parallax occlusion mapping. The diffuse
color and normals from the provided normal map are then sampled from these new UV

coordinates, which boosts a textured surface’s detail and gives it a sense of depth.
In a nutshell parallax occlusion mapping works in the following way. The provided

height map is subdivided in a number of layers. The view direction is then divided by

3



this number of layers to get a delta to shift the UV coordinates every iteration. As long
as the current layer depth is smaller than the sampled depth at this position, we move
along the view direction and check for each layer if this condition is true. If the current
layer depth is finally larger than the sampled depth at this position, we get the current
and previous UV coordinates and also the depth before and after. These two depth values
are now used to calculate a weight to interpolate the previous and current UV coordinates
and finally return the altered UV coordinates.

2.5.4 References

1. Glow CGUE-Slides - Bloom & Glow
GPUGems - Chapter 21

2. Environment RTR-Slides - Shading
Mapping Learn OpenGL - Cubemaps

Anton’s OpenGL 4 Tutorials - Cubemaps
3. Parallax RTR-Slides - Shading

Occlusion Learn OpenGL - Parallax Mapping
Mapping gamedev.net - A Closer Look At Parallax Occlusion Mapping

Sun & Black Cat - Parallax Occlusion Mapping in GLSL

3 Features

• glow effect (spheres)

• environment mapping (discord)

• parallax occlusion mapping (maze, floor)

• split screen

• multiple cameras

• multiple perspectives

4 Illumination and Texturing

Our game is illuminated by a simple Phong shading. The ambient light originates from
one light source that stays and moves according to the location of the camera (one
ambient light per camera).

Every GameObject stores the Model which got imported from a .dae-file by using
AssimpNet. Model is the representation of an imported model and holds e.g. the mesh
data in Mesh for a regular game object. Mesh stores the textures and its vertex data
using Texture respectively Vertex.

If the imported model is a light source, there are no mesh data to store, but light
data. This is done by using Light as a container. All data that are necessary for the

4

https://lva.cg.tuwien.ac.at/cgue/wiki/lib/exe/fetch.php?media=students:bloom.pdf
http.developer.nvidia.com/GPUGems/gpugems_ch21.html
https://www.cg.tuwien.ac.at/courses/Realtime/slides/11Shading_2016.pdf
https://learnopengl.com/#!Advanced-OpenGL/Cubemaps
http://antongerdelan.net/opengl/cubemaps.html
https://www.cg.tuwien.ac.at/courses/Realtime/slides/11Shading_2016.pdf
https://learnopengl.com/#!Advanced-Lighting/Parallax-Mapping
https://www.gamedev.net/articles/programming/graphics/a-closer-look-at-parallax-occlusion-mapping-r3262/
http://sunandblackcat.com/tipFullView.php?topicid=28


rendering come together in RenderingPipeline, which will pass the data to the subtypes
of AbstractRenderPass with its vertex and fragment shader passX.vert, passX.frag

(X means shader 0 to 4) , which will do the actual shading.

5 Additional Libraries

1. Object-loader: AssimpNet (v.3.2)
2. OpenGL/OpenAL Wrapper: OpenTK (v.1.1.15)

6 Modeling

1. Modeling Tools: Blender
2. Models: Discord

other models are self-made

5

https://code.google.com/archive/p/assimp-net/
https://opentk.github.io/
https://www.blender.org/
http://uncommented.deviantart.com/art/Completed-Discord-Model-358051040

	Remarks
	Implementation
	Cameras & Movement
	Texture Mapping
	Simple lighting and materials
	Controls
	Effects
	Glow
	Environment Mapping
	Parallax Occlusion Mapping
	References


	Features
	Illumination and Texturing
	Additional Libraries
	Modeling

