
Documentation for Submission 2
Project “GodMode”
(course 186.140 Echtzeitgraphik)

Group 02

Strohmayer Julian 01426125 e1426125@student.tuwien.ac.at

Gantner Patrick 01576033 e1576033@student.tuwien.ac.at

Bloom implementation details:

For the Bloom effect the full scene is
rendered to an off screen framebuffer object
with a colour attachment and a depth
attachment. This texture is then filtered
using a luma conversion [1] to get the bright
areas of the scene. After that the highlight
texture is blurred by a horizontal 1D
Gaussian kernel with size 11 and a vertical
1D Gaussian kernel with size 11. In the last
step the blurred highlight texture is
combined with the original scene texture by
adding the color values of both textures
together. (currently all textures are rendered
in full screen resolution since the framerate
is well over 60fps (200-500+ depending on
the terrain size), but may be scaled down at
a later point to improve performance)

Figure 1 - implemented Bloom effect (with unusual
high bloom factor)

Volumetric Light Scattering implementation details:

For the God Rays effect a sun billboard
texture is created which is always facing the
camera. This is done by replacing the part
of the ModelView-Matrix which is
responsible for scaling and rotation (3x3
upper left) with the an identity matrix. To
create the light source masking texture the
sun is rendered with black background color
and every object in the scene is rendered
completely black on top. This texture is then
blurred using a radial blur where the blur
origin is the screen space position of the
sun. For the radial blur the approach
described in [2] was used. The radial
blurred light source masking texture is then
combined with the output texture of the
bloom effect.

Figure 2 - implemented volumetric light scattering
effect

mailto:e1426125@student.tuwien.ac.at
mailto:e1576033@student.tuwien.ac.at

Lens Flares implementation details:

The basic idea used for this effect was
found in [3][4]. The first step in creating the
Lens Flare effect is to downsample the
current rendered scene and apply a
threshold to it to get the input texture for the
lens flare shader.
In the lens flare shader an alignment vector
for the “ghosts” is created from the center of
the screen to the inverted texture
coordinates. With a loop the ghosts are
placed along this vector by calculating an
offset and a weight value depending on
how far from the center the ghost is. The
ghosts themselves are distorted texture
lookups in the downsampled input texture
from the previous stage. After this another
ghost is added in form of a halo by using a
fixed length offset from the center.
Finally the result of the lens flare shader is
added to the original rendered scene.

Figure 3 - implemented Lens Flare effect

Other Features:
The framework of this project is a terrain simulator implemented by Julian Strohmayer, which
is a reduced and optimized version of the UE Computergraphik project “evilution” back in
2015. The game functionality was completely removed and new features were implemented
such as parametric terrain (using perlin noise) of arbitrary size or instance rendered
vegetation which is automatically placed onto the terrain by a space filling algorithm. The
framework also has realistic looking water with moving waves (using normal mapping),
reflection, refraction, Fresnel Shading and a murkiness effect.

Controls:

camera movement WASD-keys + mouse

enable/disable fps counter F1 key

enable/disable wireframe mode (not working at the moment
because the post processing effects are rendered as full screen
quad over the scene)

F2 key

enable/disable fog effect F3 key

start demo F4 key

end demo (switch to debug camera) F5 key

adjust sea level Up/Down arrow keys

close program ESC key

The program was tested on the following GPU’s:
Lab PC “AMAROK” card on the bottom
NVidia GTX 960
NVidia 940MX
AMD Radeon HD 7850

References:
[1] ​https://en.wikipedia.org/wiki/Luma_(video)​, Accessed: 26.11.2017 10:20
[2] ​https://wiki.delphigl.com/index.php/shader_radial_blur​, Accessed: 26.11.2017 11:36
[3]​https://informatik-forum.at/showthread.php?112939-Lens-Flares-Effekte-Allgemein&p=841
342&viewfull=1#post841342​, Accessed: 26.11.2017 13:09
[4] ​http://john-chapman-graphics.blogspot.co.at/2013/02/pseudo-lens-flare.html​, Accessed:
26.11.2017 13:04

https://en.wikipedia.org/wiki/Luma_(video)
https://wiki.delphigl.com/index.php/shader_radial_blur
https://informatik-forum.at/showthread.php?112939-Lens-Flares-Effekte-Allgemein&p=841342&viewfull=1#post841342
https://informatik-forum.at/showthread.php?112939-Lens-Flares-Effekte-Allgemein&p=841342&viewfull=1#post841342
http://john-chapman-graphics.blogspot.co.at/2013/02/pseudo-lens-flare.html

