Mini Krieg

Adam Papp 1327381 066 932 e1327381@Qstudent.tuwien.ac.at
Felix Koenig 0917104 066 932 €0917104@student.tuwien.ac.at

19.01.2015

1 Description

In this demo scene there is a tank placed in a museum room. The tank
is moving forward and leaves a trail behind, here a CPU particle system is
used. The tank shoots bullets in 360 degrees. These bullets are moved by a
GPU particle system and rendered using tessellated spheres with LOD and
animation using displacement. While the tank and it’s effects are shown,
Omni Direction Shadow Mapping is used. Afterwards, the shadows are ren-
dered using Shadow Volumes. Then the Cube Mapping effect can be seen on
the ellipsoid. Finally, the camera will look outside of the room showing the
Volumetric Lighting effect. Before the demo is finished, the shadow of the
tank is shown once more using Shadow Volumes.

2 Starting the Demo

The demo can be started in full screen mode in 1920 * 1080 with 60Hz refresh
rate by double clicking on the exe. If it is started from command line, it must
be started from the bin directory. In this case arguments can be used in the
following format: 1920(w) 1080(h) 60(r) O(windowed). Please note, that the
CMake script must be set initially to Debug or Release. This can be done
in the CMake-GUI at the CMAKE_CONFIGURATION_TYPES variable.
Selecting build type in Visual Studio won’t link with correct libraries. Please
also note, that the shader and texture folder are placed next to the bin folder
in the zip file. This is done, because the development environment is also set
up this way and the exe finds files using the following structure:

1

{any directory}/MiniKrieg.exe
shader /shader.vert
texture/texture.bmp

demo.dae

Controls
ESC - exit
SPACE - pause
ENTER - continue
MOUSE - camera control (when paused)
ARROWS - camera control (when paused)
F2 - Frame time in window title
F3 - Wire-Frame
F4 - Texture Mag filter
F5 - Texture Min filter

F6 - Change tessellation level(0-dynamic)

TEST ENVIRONMENT: We tested the demo at the CYLON computer
with the nvidia graphics card.

3

Rendering Engine

During the development of the rendering engine, the basic classes from the
SteelWorms game was used, which was developed in the previous semester
for the CG UE. The new engine was designed in a way, to be able to load
every detail of a scene by using the Assimp library, therefore some of the
classes had to be redesigned for this new scenario.

3.1 Scene

The complete scene was redesigned in parent-child relation. The same hi-
erarchy is built up as the Assimp aiScene class holds. The Assimp Scene
Structure can be seen on figure [I Each SceneObject holds it’s local model
matrix. In order to compute the global model matrix of an object, the par-
ents must be traversed until the root. This way the camera is also the part
of the scene, therefore camera animation can be handled. The demo has a
pause mode to be able to move the camera around the scene freely.

Each SceneObject(Assimp:aiNode) has a corresponding aiNodeAnim, which
is accessible through the name. For convenience, the number of Quaternion,
Position and Scaling and their time at the same index must be the same.
The time is a measurement since the start of the global scene animation.
The local model matrices are computed using the equation M =T % R * S;,
where the Quaternions, Position and Scalings are interpolated values be-
tween two T, R,S from aiNodeAnim. The SceneObject class has a vir-
tual animate function, which takes the time since start as an argument.
This function takes the i** local model matrix from the animation, where
M;.time < time <= M, .teme and sets it as the current local model ma-
trix. The animate function was chosen to be virtual, because special objects
might need special calls, for example the camera class needs to compute the
view matrix on every model matrix change.

The models are also loaded using the Assimp library. The material infor-
mation is stored in the model object. Images are loaded using the OpenCV
library and stored in a texture object. Multiple SceneObjects can use the
same model or texture objects. Shader loading is redesigned to be able to
link together arbitrary number of shaders of different types.

3.2 Implementation

The implementation consists of the following classes.

e Texture: Encapsulates a texture in the GPU. It holds the handle for
the texture in the GPU memory. Has a static function to load images
using the OpenCV library.

e Model: Encapsulates a graphical object model in the GPU. Holds the
GPU vertex buffer objects for indices, vertices, normals, texture coor-
dinates and the material values.

aiScene

Rool o
Bz node RTIEED alAnimation]

Name chamnel pyation Ticks per
. second

|

There can be many animations.
For exampie; one for running,
one for jumping, efc.

aiNode

Mesh index Name Matrix

The node treg'containg all abjects
in the scerie, including all bones.
They 'are grganized in a

parentichild reiation. The malrix is

reltive toithe parent. There is one channel for each
bone. The name of the channel

is the node name. The matrix
defined by the keys is relative to
the node parent.

aiMesh

normal

vartice

aiNodeAnim
Name Rot Key Scale Key Pos Key
7

Quaternion
key

Position key

he list of bones used for this
mesh. The matriy is the Time Value
lafion between ifie mesh
and bone in bind pose.

aiBone Scaling key
Offset Weight Name
matrix N Time Value

Figure 1: Assimp ~ Scene Structure. Image from:
http://ephenationopengl.blogspot.co.at

Time Value

e Shader: Encapsulates a shader program. It holds the handle for the
GPU Shader program. It compiles shaders. Has a static function to
load text files.

e AssimpLoader: The class which is responsible for loading all the details
to build up a scene. It is constructed and destructed in the init of the
scene class.

e Scene: The class which holds a complete scene and it’s assets. The
assets are stored as a std::map of std::unique_ptr. If needed they can
be searched by name, but objects can have direct access through raw
pointers. This design does not allow easy swapping of assets between
different scenes. The SceneObjects are stored in parent-child hierarchy,
therefore only the root node is stored. For rendering purpose, a render
list is stored as a std::map. Objects can be pushed or inserted accord-
ing to indices, and can be removed with pointers. The SceneObjects
are stored as std::shared_ptr. This might be a performance decrease,
because of the atomic increments, in the current design where there is

no multithreading.

e SceneObject: The base class of the objects which are rendered. It
has a pointer to a shader, a model, a scene, holds the model matrix
and a handle to a vertex array object. A generic drawing function is
written here. It holds the parent child hierarchy. Childs are stored
in shared_ptr. The parent is stored in a std::weak_ptr. This solution
is questionable, since this implies an atomic increment and decrement
on each parent access, which happens frequently. Another problem
might be if an implementation bug causes, that the parent has been
deleted but the child still lives, then the weak_ptr will return NULL,
the program won’t crash because this means that the root has been
reached, but the object has not reached the root, so it won’t be in
global model space.

e Camera: Implements the camera movement with user input. It is in-
herited from the SceneObject.

e Sun: Stores constants for lighting. It contains the Shadow Volumes
and the Omni Directional Shadow Maps.

e Debug: The switches to experiment OpenGL performance and quality
are implemented here.

e Tank: The tank class inherited from SteelWorms, animate function is
used to add new particles.

e Tessellation: Tessellation is implemented here, it is inherited by the
ParticleSystemGPU.

e ParticleSystemCPU: The trail of the tank is implemented as a CPU
particle system.

e ParticleSystemGPU: The tessellated bullets are implemented as a GPU
particle system.

4 Basic Lighting

For the current submission, standard lighting using Phong shading in combi-
nation with the Blinn Phong illumination model has been implemented. The

shaders are called phongColor.vert and phongColor.frag. In the vertex
shader, the normals and the normalized vector between the vertex and the
light source are computed. The fragment shader receives the interpolated
vectors and outputs the new color based on the following equation.

I=kit Y (ka(Li-N)+ky(R-V) (1)

i€ Lights

L; interpolated, normalized direction vector to the lightsource from the
surface point

N interpolated, normalized normal vector of the surface point

R Light reflection vector from the surface point
e V view vector from the point on the surface to the camera

The ambient (k,), diffuse (k4) and specular (ks) factors are passed as uni-
forms. They can vary per SceneObject and need to be defined in the collada
file. Furthermore, no halfway vector is needed, since the built in GLSL func-
tion reflect is preferred.

5 Volumetric Lighting (Light Shafts)

The volumetric lighting effect has been implemented according to the fol-
lowing GPUGems article http://http.developer.nvidia.com/GPUGems3/
gpugems3_ch13.html. The class sunVolumetric.cpp implements the com-
plete effect. It first renders the objects into a framebuffer where all objects
are drawn black except the sun itself, which has its original texture. This
is called the occlusion prepass. Afterwards in the post-processing step, the
whole light shaft computation based on the scattering equation 4 is per-
formed. For the shading, a quad with the size of the screen is rendered in
order to use the previous texture from the occlusion prepass.

6 Omni Directional Shadows

Omni Directional Shadow maps are based on the Repetitorium Slides. The
sun objects computes the cube shadow map in a preprocessing step (uses a
Framebuffer) and this shadow map is later used by the sceneObject.cpp

6

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch13.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch13.html

class for the shadow map lookup. Our framework is able to switch between
Omni Directional Shadows and Shadow Volumes as shown in the demo. In-
stead of rendering the whole screen 6 separate times, a geometry shader is
used.

7 Shadow Volumes

The Shadow Volumes implementation is based on the following article http:
//http.developer.nvidia.com/GPUGems3/gpugems3_chll.html, and im-
plemented in the class sun.cpp. There are 2 preprocessing steps necessary
to perform the whole rendering which is handled by the ambientPass() and
SVPass methods. The first method renders the ambient light and the second
method fills the depth buffer in order to enable the stencil test during the
final draw() calls in the Sceneobjects.

8 Dynamic Environment Mapping

http://www.nvidia.com/object/cube_map_ogl_tutorial.html The method
has been implemented similar to the Omnidirectional shadow maps, where

a geometry shader has been used. The whole environment mapping where
the scene is rendered into a framebuffer is done in the cubeMapObject.cpp
class together with the final drawing of the cubemap. The reflection vector

is calculated as depicted in the slides.

9 Tessellation

For the rendering of animated flying bullets effect, tessellation was imple-
mented using the Tessellation Shader. Since this effect is part of the GPU
Particle System, this section will have some references on particles. The
Vertex Shader is only a pass-through shader. In the Tessellation Control
Shader, the inner and outer tessellation level can be set. The meaning of this
two variable is visualized on image [2] Using the life of a particle, the ver-
tices of the object are scaled. For this purpose, level-of-detail is used, where
larger objects will have more vertices generated. The value of tessellation
levels are computed using the life of a particle. The effect uses triangles to
tessellate, therefore Barycentric coordinates are received in the Tessellation

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch11.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch11.html
http://www.nvidia.com/object/cube_map_ogl_tutorial.html

Evaluation Shader. The vertices are computed by interpolating the Barycen-
tric coordinates of the tessellated values with the control points. Then they
are normalized to transform the cube model into a sphere. If quads would be
tessellated, interpolation would be necessary only for normals. Displacement
mapping is used in order to modify the shape of the sphere. To achieve a
simple animation a 3D texture is used, which stores layers of Gaussian func-
tions with increasing sigma value. The coordinates of the texture is the usual
u, v and the third coordinate is the life of the particle. The positions are
translated along the normal in local space to achieve displacement. To im-
prove the normals of the displaced surface a Geometry Shader is used, where
the tessellated normals are interpolated with the normal of the face, where
the normal of the face is the cross product of two vectors computed from the
displaced vertices. Finally the Fragment Shader of the OmniShadow effect is
used. To achieve shadows with OmniShadow, only a simplified Tessellation
Evaluation Shader is necessary for rendering the tessellation effect within the
OmniShadow effect.

H
(o]
P
6]
©
[
a
(e]
o
i)
©
—
—
Q
7}
1]
Q
B

Tessellation Factor

Figure 2: Visualization of different tessellation levels of a triangle. Image
from: StackOwverflow - Tessellation Shader - OpenGL

10 GPU Particle System

For the moving of animated flying bullets effect, a GPU particle system
was implemented using the Compute Shader. This way the moving of the
particles are computed on the GPU and it could handle even more bullets,
then what appears in the demo. Two Shader Storage Buffer Objects and one
Atomic Counter Buffer Object are used. In the first buffer particles can have
arbitrary order, in this buffer all the attributes of a bullet are stored. The
second buffer stores the position and life of the particles aligned, this is the
render buffer. A GPU thread is executed on one particle. If it lives, then its
new position is computed, the active particle atomic counter is incremented
and data is placed into the render buffer at the position retrieved from the
atomic operation. When a particle is dead and a new particle should be
inserted, an atomic increment is done. If the prefix from the atomic operation
is smaller then the number of new particles, then the particle at the prefix
is loaded by the current thread. Note, that currently only one new particle
can be uploaded as a uniform. There is an article about atomic counter on
LightHouse 3D, according to this article, when atomic counters are supported
by hardware, the cost of atomic functions are just like any other function call.
Finally, the value of the atomic counter of active particles is read back to the
CPU to be able to render with instancing.

11 CPU Particle System

For the trails of the tank, which it leaves while moving was implemented
using a CPU particle system. This effect is an improved version from the
SteelWorms game. Fixes have been done in coordinate systems and it has
been adopted to the new effects. It uses transparency therefore sorting is
needed based on the camera distance and it must uploaded to the GPU on
every call.

12 Additional Libraries

e GLFW - http://www.glfw.org/
e GLEW - http://glew.sourceforge.net/

e GLM - http://glm.g-truc.net/
e Assimp - Scene loader http://assimp.sourceforge.net/

e OpenCV - Image loader https://www.willowgarage.com/pages/software /opencv

References

10

	Description
	Starting the Demo
	Controls

	Rendering Engine
	Scene
	Implementation

	Basic Lighting
	Volumetric Lighting (Light Shafts)
	Omni Directional Shadows
	Shadow Volumes
	Dynamic Environment Mapping
	Tessellation
	GPU Particle System
	CPU Particle System
	Additional Libraries

