Sampling Aspects of Volume Rendering

Miloš Šrámek and Leonid Dimitrov

Volume Rendering

Ray-Casting

Shoot rays from each pixel
Define a sequence of samples
Accumulate color along each ray

Compositing

Aproximate light attenuation e.g. Front-to-Back compositing:

$$I_m = I_{m-1} + (1 - \beta_{m-1})C_m$$

$$\beta_m = \beta_{m-1} + (1 - \beta_{m-1})\alpha_m$$

Segment opacity

$$\alpha_i = 1 - e^{-\int_{t_i}^{t_{i+1}} \rho(u) \, du}$$

VR: Different Techniques

Shaded (gradients evaluated) Unshaded (reprojection, no gradient) MIP

VR Questions

- Which is the correct sampling density along a ray
- Which is the influence of gradient on the correct sampling density
- Which is the correct sampling density in perspective rendering

Frequency Properties of Sampled Data

Maximum representable frequency:

Optimal sampling (ideal): 1 sample/voxel

- Optimal sampling (real): more than 1 sample/voxel. It depends on
 - spectral properties of data
 - used visualization technique (gradients!)
 - Used reconstruction filters

Low vs. High Sampling Density

Rendered images at
10 samples along a ray / voxel
Samples on voxel boundaries (0.7 / voxel)
Results:

$$SNR(dB) = 10 \log \frac{\sum f_i^2}{\sum |t_i - f_i|^2}$$

Technique	Image SNR [dB]
Shaded	63
Unshaded	120
MIP	87

Rules of Thumb

Unshaded (reprojection) 1 sample / voxel is OK

- ◆ MIP
 - I sample / voxel is not that bad
- Shaded
 - 1 sample / voxel is definitely bad (2, 4, 8 samples?)

Perspective Rendering

Problems in perspective rendering

Incorrect spatialy variable sampling:

Oversamplig (long time)
Undersampling (low image quality)

Motivation (Image Quality) Û \mathbf{O}

Motivation (Image Quality)

Motivation (Image Quality)

Motivation (Rendering Speed)

A Correct Solution
VR is a resampling process:

Reconstruction of a continuous field
Antialiasing by low-pass filtering
Sampling
Compositing

Can be combined in one filter:

Size and sampling density depend on distance between rays

A Correct Solution

Practical Solutions

3D-mip map

multum in parvo, much in a small space

- [Levoy & Whitaker `90]
- Adaptive sampling [Novins et al. `90]

Splitting a ray in 4 rays when necessary

 Exponential Regions Perspective [Kreeger et al. `98]

3D Mip Maps

Build a hierarchy of volumes by downsampling:

- Low pass filtering
- Take every second sample
- Sample a pair of volumes simultaneously:
 - 2 x trilinear + linear interpolation

ER Perspective

- Regular pattern of merge/split
- ◆ Exponentially growing regions ⇒ 2 uniform divergence

ER Perspective

Ray Density Resampling

A

A = $\frac{0}{4}$ a + $\frac{1}{4}$ b + $\frac{2}{4}$ c + $\frac{1}{4}$ d + $\frac{0}{4}$ e

ER Perspective - Results

Undersampling ER - Perspective Oversampling

ER Perspective – Results

ER Perspective - Results

The End