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Overview

● Volume visualization
– Volume viewing
– Mapping
– Volume rendering

● Direct volume rendering
● Isosurfacing
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Volume Data

● A spatial sequence of 2D images – slices

● Produced by
– 3D scanners (tomographs)

● Different physical background
● Different and complementary properties

– Simulation
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Volume Visualization

● Visually perceivable data presentation
● Understanding, not photorealism 
● Simple volume viewing

– Straightforward presentation of measured data

● Mapping techniques
– Measured densities are mapped to visual 

attributes (transparency, color)

Measured Data  ImagesRendering

Measured Data Mapping  ImagesRenderingMeasured DataDerived Data
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Volume Viewing (1)

● Slice-by-slice viewing 
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Volume Viewing (2)

● Multiplanar reconstruction
– Definition of new cutplanes 

Axis aligned Oblique Combined
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Volume Viewing (3)

● Curved planar reconstruction
– Volume cutting along a line
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Volume Viewing (4&5)

● Reprojection 
– Add all values along a viewing 

ray 
– Simulation of X-ray projection

● Maximum intensity 
projection 
– Register the brightest value 

along a viewing ray
– Suitable for thin structures
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Volume Visualization by 
Mapping 

Data Acquisition
CT, MRI, USG, PET, SPECT

Mapping
Visual attributes

Rendering
Surface & Volume 

Techniques
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Why Do We Need 
Mapping?

● No visual 
representation readily 
exists for 3D data

● Area of interest is 
occluded by the black 
background

● We need something 
to make the 
background 
transparent
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Assignment of Visual 
Attributes

● Mapping: Assignment of visual attributes to 
data:
– transparency, color, reflectance, surface 

strength...
● “Area of interest” specification achieved:

Density-based
classification

Space-based
segmentation

>>> ······ >>>
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Mapping: Summary

● Transfer function based:
– Color & transparency assigned to voxels
– Semitransparent volumes
– Display of volumes

● Segmentation-based
– Unambiguous object definition
– Color & transparency assigned to objects
– Display of surfaces 

( )not used for classification of rendering 
techniques



14

Classification of Rendering 
Techniques (1)

● Based on the basic rendering primitive
● Surface rendering

– Basic primitive: 2D patches (polygons)
– Extra data structure: a surface model
– Decoupling of the model 

and the data
– Rendered by standard CG 

approaches

Triangulation by the 
Marching Cubes technique,

approx. 200000 polygons
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Classification of Rendering 
Techniques (2)

● Volume rendering
● Basic primitive: the voxel itself
● Rendering directly from volume data:
● Two flavors:

– TF based: Direct volume rendering (DVR)
● All (semitransparent) volume samples potentially 

contribute to the image
– Segmentation (object) based: Isosurfacing

● Only visible surfaces are displayed
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DVR vs. Isosurfacing

● Rendering algorithms are similar
● Isosurfacing is a limit case of DVRs with 

special TF and parameter setting
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When to Prefer DVR?

● Low data contrast, weak edges, thin objects

DVR Isosurfacing

MRI head data:
Ventricles & 
deep brain 
structures
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When to Prefer 
Isosurfacing?

● Numerous & complex objects, TFs make no 
sense

MRI data

Object labelsDVR Isosurfacing  with cutplanes
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DVR Basics

● Simplified light interaction with semi-
transparent material

● Light attenuation and emission along a ray

● No shadows, no reflections
● Numerical evaluation:

– Per-segment compositing by Porter&Duff's 
operators

● Front-to-back order
● Back-to-front order

I(t): Light intensity at the point t
ρ(t): Optical density (attenuation)
ρ(t)I(t): Light attenuation at t
k(t): Chromacity
k(t)ρ(t):Light emission rate at t
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DVR Techniques (1)

Free/adjustable parameters (mapping):

● Transfer functions:

● Edge accentuation:

● Shading: 
● Depth cueing
● Others: shape, size, ...

t = f  dt 
k(t)= f k(d(t))

t ~∣∇ dt ∣

kt ~∇ dt . p f kdt 
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DVR Techniques (2)

Unshaded Shaded
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Rendering by Compositing

● Interaction with matter results in 
absorption
– Beer-Lambert law:

● Evaluation along a projection ray
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Volume Rendering Integral

● Integral form of the 
Beer's law

transparency
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Per Segment Evaluation of 
the VRI (1)

● Transparency: 
– 1: fully transparent
– 0: fully opaque 

● Opacity: 
– amount of stopped light
– opacity = 1 – transparency

● Segment opacity:

– The amount of light stopped along a 
segment
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Per Segment Evaluation of 
the VRI (2)

● Front-to-back compositing

● Back-to-front compositing  

'under' operator

'over' operator

I – accumulated color
C- sample color
β- accumulated opacity
α- sample opacity
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Approximations

● Approximation of ρ and k by a constant:

● Chromacity premultiplied by opacity
● Scaling required with real data
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DVR Algorithms

● Object-order algorithms (splatting)
– Projection of samples from volume to image
– Compositing in image plane

● Image-order algorithms
– Ray casting based
– Sequence of samples along the ray
– Compositing along the ray
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3D  Discrete  Space

● 3D grid point (sample): 
●    P = [x, y, z],   x, y, z ∈ Z
● Value at sample P: density
● Voxel: 

– Voronoi neighborhood of P
– NN interpolation

● Cell: 
– 8 samples
– higher order interpolation 
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Object-Order VR: Splatting

● Samples/voxels are 
projected (splatted) 
onto the viewing 
plane

● Back-to-front of 
front-to-back order

● One sample 
projects onto 
several pixels

Object Space - volume

Image
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Splatting Footprint 
(Westover)

● A sample is represented as a cloud of 
particles

● High resolution footprint table: computed 
only once

● BTF, FTB compositing
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Footprint table
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Splatting artifacts (1)

● Traversal order 
depends on viewing 
angles

● The most parallel 
scanline to image is 
chosen

● Popping artifacts:

image 1

scanline 1
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Splatting artifacts (2)

● Image aligned 
sheet-buffer

● No popping

image aligned
sheet-buffer

image

rot=45° rot=45.1°
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HW Acceleration by 
Texture Mapping

● Do the costly part  by hardware
● 2D Textures

– compositing only
– volume aligned slices
– three copies of the 

volume required
● 3D Textures

– interpolation & compositing
– image aligned slices

● Shading possible in 
fragment programs 
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Image Order VR by Ray-
Casting (1)
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Image Order VR by Ray-
Casting (2)

● Shoot rays from each pixel
● Define a sequence of 

samples
● Accumulate color and 

opacity along each ray

● CPU and GPU 
implementations possible

● Acceleration required:
– Adaptive sampling, empty 

space skipping, hierarchical 
subdivision, early termination
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Isosurfacing Basics

● Interpolation domain:
– Original densities
– Segmentation labels

● Algorithms:
– (First hit) ray tracing
– Ray/surface intersections

by numerical root finding
● CPU and GPU implementa-

tions possible
● Acceleration required Surface
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Ray Casting Advantages

● Simplicity and 
flexibility

● Combination of 
techniques possible:
– DVR, isosurfacing, 

MIP, CPR, cutplanes
– per object definition 

of  techniques and 
parameters
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Ray Casting Advantages

● Simplicity and 
flexibility

● Combination of 
techniques possible:
– DVR, isosurfacing, 

MIP, CPR, cutplanes
– per object definition 

of  techniques and 
parameters
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Conclusion

● We have plentiful volume rendering 
techniques

● We do not have enough memory
● The computers are not fast enough
● The doctors still prefer slice-by-slice 

viewing (but getting better recently...)
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Thank you!

milos.sramek@oeaw.ac.at
www.viskom.oeaw.ac.at/~milos

mailto:milos.sramek@oeaw.ac.at
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