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A Real-Time VR System
 Real-Time: 25-30 frames  per  second
 4D visualization: real time input of data 

volumes
 High resolution data sets: 5123, 16 bit
 High image quality: shading, 

transparency, depth cues
 Interactive parameter changes: lookup 

tables, classification



Real-Time Data Visualization
 Simulation / visualization

 Acquisition / visualization

Render

Render

E.g., Surgical SimulationE.g., Surgical Simulation

E.g., 3D UltrasoundE.g., 3D Ultrasound



Processing Requirements

 High demands on storage, processing, 
and communication of data

 E.g., a 5123 volume:                                        
 224 samples  30 instructions  30 frames/sec

 500 MBytes/sec band-width between 
processor and memory.

 256 MBytes of storage
 120 billion instructions per second.



HW Acceleration

 General-Purpose Supercomputers
 Special Architectures
 Graphics Accelerators



General-Purpose 
Supercomputers

 MIMD (e.g. SGI Challenge - 16 processors, 
shared memory

 Performance 5-10 fps (Lacroute 1995)
 Drawbacks:

 very expensive
 shared among users 



Special Architectures

Not specialized on volume rendering

(video or polygon processing)
 The PIXAR and PIXAR II Image 

Computer (1984)
 Pixel-Planes 5 (Fuchs 1989)



PIXAR

 Primary purpose: Visual effects in film 
industry

 Used for volume rendering (Drebin 
1988) 
 Fast volume rotation by shearing.
 Accumulation along volume rows



Pixel-Planes 5
 Multipurpose system (ray casting, 

splatting)
 Graphics processors (20) and 

Renderers (8)
 192192128 data sets at 11 frames per 

second
 Problems   

with 
bandwidth



Volume Rendering 
Accelerators

 PARCUM (Jackel 1985)
 parallel ray casting
 5123 in about a minute

  The Voxel Processor (Goldwasser 1983)
 octree scene subdivision
 hierarchy of rendering an display processors
 back-to-front rendering of binary data, image-

space shading
 2563, 25 fps 

 Never built



SGI Reality Engine
 Texture mapping of polygons 

through 3D texture memory
 Multiple Raster Manager boards 

(16MB textures each)
 Rendering technique:                           

planar texture                               
resampling

 10 fps (51251264)  
Cabral 1994

 No shading
Ray Casting

Planar Texture 
Resampling



The CUBE Project               
(Kaufman 1988) 

 Based on a Cubic Frame Buffer (CFB)
  linear memory skewing, simultaneous 

access to a beam of voxels

 Cube 1: orthonormal projections
 163 data sets, 16 boards

 Cube 2: ditto, VLSI implementation 
(14000 transistors)

 Resulted  in VolumePro (1999)



VolumePro: The Ray-Casting 
Pipeline

 Data traversal
 For each pixel, step along a ray

 Resampling
 Tri-linear interpolation

 Classification
 Assign RGBA to each sample

 Shading
 Estimate gradients (normals)
 Per-sample  illumination

 Compositing
 Blend samples into pixel color

CompositingCompositing

RGBA LUTRGBA LUT

IlluminationIllumination

3D Gradients3D Gradients

DataData
TraversalTraversal

DataData
BuffersBuffers

Memory InterfaceMemory Interface

InterpolationInterpolation



Super-Sampling Along Rays

SS = 1 SS = 2 SS = 4



Real-Time Classification
Interactive design of color and opacity transfer functionsInteractive design of color and opacity transfer functions



The Phong Illumination 
Model

No IlluminationNo Illumination Phong IlluminationPhong Illumination

Color = (ke + kd Id ) SampleColor + ks Is  SpecularColor
EmissiveEmissive DiffuseDiffuse SpecularSpecular



3D Line Cursor and Cut 
Plane



3D Line Cursor and 
Cropping



The VG500 Board



VolumePro 500 Summary

 DVR with trilinear interpolation and 
Phong sampling

 Future (??)
 Perspective projection
 Objects (masking)
 Overlapping volumes
 Intermixing volumes and geometry



2D Texture Mapping

X 
textures

Y
textures

Z
textures

Ray
traced

Rendered by VolView on standard 8MB graphic 
board (1998)



3D Texture-Mapping HW
 Volume is a 3D texture
 Proxy geometry:

  polygons perpendicular to 
viewing direction

 Clipping against volume 
bounding box

 Assign 3D texture 
coordinates to each vertex of 
the clipped polygons

 Project back-to-front using 
OpenGL blending operations

 Originally, no shading!!



3D 
Texture 
Mapping

Increasing 
sampling 

rate



Programmable Graphics HW

 Nvidia, ATI
 Vertex & Fragment Shaders run 

programs

Scene 
description

Geometry 
processing

Rasterization
Fragment

operations

Vertices Primitives Fragments Pixels

Image



Modern GPUs: Unified Design

Vertex shaders, pixel shaders, etc. become threads running different programs on flexible 
cores



A Modern GPU Architecture



C for Graphics (Cg) 

 A C-style language for writing vertex 
and fragment programs

 On-demand system-dependent 
compilation

 Significant simplification o HW 
programing



DVR using HW acceleration 

 Proxy geometry based 
 A set o polygons
 Defines relation between 

volume (3D texture) and 
viewing parameters

 Polygons textured by the shading program
 The role of HW

 Texture interpolation
 Evaluation of the program

 Blending of textured polygons 



A Cg example (1)
Shading by setting RGB colors to data gradient

output_data main(
input_data IN,

              uniform sampler3D volume)
{
output_data OUT;
float4 color1 = tex3D(volume, IN.texcoord1);   
float3 normal;
float3 t0 = IN.texcoord1; float3 t1 = IN.texcoord1;
t0.x-=K; t1.x+=K;
normal.x = tex3D(volume,t1).r-tex3D(volume,t0).r;
......
normal = normalize(normal);
OUT.color.rgb = normal*0.5+0.5;
OUT.color.a = color1.a;
return OUT;
}



A Cg example (2)
Surface enhancement and shading
output_data main(input_data IN,
                uniform float3 light,
                uniform sampler3D volume,
                uniform sampler3D gradient
{
output_data OUT;

float4 color1 = tex3D(volume,IN.texcoord1);
float3 normal = tex3D(gradient,IN.texcoord1);

float3 vecToLight = normalize(light - IN.position);
float difuseLight = max(dot(

normalize(normal),vecToLight),0);

OUT.color.xyz =  float3(1.0,1.0,0.0)*difuseLight;
OUT.color.a = 10*length(normal)*color1.a;

return OUT;
}



GPU-based Volume Ray 
Casting

 On principle the same 
as CPU ray casting

 Special conditions of 
the environment
 Store volume as 3D-

texture, cast rays in 
fragment program, ...



Basic Ray Setup

 Start & end point and direction rquired
 Evaluated in shader by rasterization of 

the volume bounding box

Back face Front face Ray directions



Standard Optimizations 
Possible

• Early ray termination:

– Isosurface: stop on a surface

– DVR: stop when accumulated opacity > 
threshold

• Empty space skipping:

– skip transparent samples

– Traverse hierarchy (e.g.: octree)



Empty Space Skipping
• Bricking: use approximation instead 

of the bounding volume 



Intersection Refinement

• Bisection: fixed step number or 
refinement



Advanced Techniques

 Light interaction
 Illumination models

 Reflection
 Shadows
 Semi-transparent shadows

 Ambient occlusion (local, dynamic)
 Scattering (single and multiple, Monte-

Carlo,...)



A few results...



GPU for General 
Computations (gpgpu)

 Modern GPUs: Single and double 
precision computational units available

 Accessible through special API
 CUDA (NVIDIA)
 Brooks (ATI)
 OpenCL (HW independent, support multiple 

CPUs)

 Often used in supercomputers (see 
top500.org)



Gpgpu example: Gaussian 
filtering

 Filtering of m3 volume by n3 filter
 Theoretical complexity: 3nm3

 GPU requires enough data to process
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