
Hardware Accelerated Volume
Visualization

Leonid I. Dimitrov & Milos Sramek
GMI

Austrian Academy of Sciences

A Real-Time VR System
 Real-Time: 25-30 frames per second
 4D visualization: real time input of data

volumes
 High resolution data sets: 5123, 16 bit
 High image quality: shading,

transparency, depth cues
 Interactive parameter changes: lookup

tables, classification

Real-Time Data Visualization
 Simulation / visualization

 Acquisition / visualization

Render

Render

E.g., Surgical SimulationE.g., Surgical Simulation

E.g., 3D UltrasoundE.g., 3D Ultrasound

Processing Requirements

 High demands on storage, processing,
and communication of data

 E.g., a 5123 volume:
 224 samples 30 instructions 30 frames/sec

 500 MBytes/sec band-width between
processor and memory.

 256 MBytes of storage
 120 billion instructions per second.

HW Acceleration

 General-Purpose Supercomputers
 Special Architectures
 Graphics Accelerators

General-Purpose
Supercomputers

 MIMD (e.g. SGI Challenge - 16 processors,
shared memory

 Performance 5-10 fps (Lacroute 1995)
 Drawbacks:

 very expensive
 shared among users

Special Architectures

Not specialized on volume rendering

(video or polygon processing)
 The PIXAR and PIXAR II Image

Computer (1984)
 Pixel-Planes 5 (Fuchs 1989)

PIXAR

 Primary purpose: Visual effects in film
industry

 Used for volume rendering (Drebin
1988)
 Fast volume rotation by shearing.
 Accumulation along volume rows

Pixel-Planes 5
 Multipurpose system (ray casting,

splatting)
 Graphics processors (20) and

Renderers (8)
 192192128 data sets at 11 frames per

second
 Problems

with
bandwidth

Volume Rendering
Accelerators

 PARCUM (Jackel 1985)
 parallel ray casting
 5123 in about a minute

 The Voxel Processor (Goldwasser 1983)
 octree scene subdivision
 hierarchy of rendering an display processors
 back-to-front rendering of binary data, image-

space shading
 2563, 25 fps

 Never built

SGI Reality Engine
 Texture mapping of polygons

through 3D texture memory
 Multiple Raster Manager boards

(16MB textures each)
 Rendering technique:

planar texture
resampling

 10 fps (51251264)
Cabral 1994

 No shading
Ray Casting

Planar Texture
Resampling

The CUBE Project
(Kaufman 1988)

 Based on a Cubic Frame Buffer (CFB)
 linear memory skewing, simultaneous

access to a beam of voxels

 Cube 1: orthonormal projections
 163 data sets, 16 boards

 Cube 2: ditto, VLSI implementation
(14000 transistors)

 Resulted in VolumePro (1999)

VolumePro: The Ray-Casting
Pipeline

 Data traversal
 For each pixel, step along a ray

 Resampling
 Tri-linear interpolation

 Classification
 Assign RGBA to each sample

 Shading
 Estimate gradients (normals)
 Per-sample illumination

 Compositing
 Blend samples into pixel color

CompositingCompositing

RGBA LUTRGBA LUT

IlluminationIllumination

3D Gradients3D Gradients

DataData
TraversalTraversal

DataData
BuffersBuffers

Memory InterfaceMemory Interface

InterpolationInterpolation

Super-Sampling Along Rays

SS = 1 SS = 2 SS = 4

Real-Time Classification
Interactive design of color and opacity transfer functionsInteractive design of color and opacity transfer functions

The Phong Illumination
Model

No IlluminationNo Illumination Phong IlluminationPhong Illumination

Color = (ke + kd Id) SampleColor + ks Is SpecularColor
EmissiveEmissive DiffuseDiffuse SpecularSpecular

3D Line Cursor and Cut
Plane

3D Line Cursor and
Cropping

The VG500 Board

VolumePro 500 Summary

 DVR with trilinear interpolation and
Phong sampling

 Future (??)
 Perspective projection
 Objects (masking)
 Overlapping volumes
 Intermixing volumes and geometry

2D Texture Mapping

X
textures

Y
textures

Z
textures

Ray
traced

Rendered by VolView on standard 8MB graphic
board (1998)

3D Texture-Mapping HW
 Volume is a 3D texture
 Proxy geometry:

 polygons perpendicular to
viewing direction

 Clipping against volume
bounding box

 Assign 3D texture
coordinates to each vertex of
the clipped polygons

 Project back-to-front using
OpenGL blending operations

 Originally, no shading!!

3D
Texture
Mapping

Increasing
sampling

rate

Programmable Graphics HW

 Nvidia, ATI
 Vertex & Fragment Shaders run

programs

Scene
description

Geometry
processing

Rasterization
Fragment

operations

Vertices Primitives Fragments Pixels

Image

Modern GPUs: Unified Design

Vertex shaders, pixel shaders, etc. become threads running different programs on flexible
cores

A Modern GPU Architecture

C for Graphics (Cg)

 A C-style language for writing vertex
and fragment programs

 On-demand system-dependent
compilation

 Significant simplification o HW
programing

DVR using HW acceleration

 Proxy geometry based
 A set o polygons
 Defines relation between

volume (3D texture) and
viewing parameters

 Polygons textured by the shading program
 The role of HW

 Texture interpolation
 Evaluation of the program

 Blending of textured polygons

A Cg example (1)
Shading by setting RGB colors to data gradient

output_data main(
input_data IN,

 uniform sampler3D volume)
{
output_data OUT;
float4 color1 = tex3D(volume, IN.texcoord1);
float3 normal;
float3 t0 = IN.texcoord1; float3 t1 = IN.texcoord1;
t0.x-=K; t1.x+=K;
normal.x = tex3D(volume,t1).r-tex3D(volume,t0).r;
......
normal = normalize(normal);
OUT.color.rgb = normal*0.5+0.5;
OUT.color.a = color1.a;
return OUT;
}

A Cg example (2)
Surface enhancement and shading
output_data main(input_data IN,
 uniform float3 light,
 uniform sampler3D volume,
 uniform sampler3D gradient
{
output_data OUT;

float4 color1 = tex3D(volume,IN.texcoord1);
float3 normal = tex3D(gradient,IN.texcoord1);

float3 vecToLight = normalize(light - IN.position);
float difuseLight = max(dot(

normalize(normal),vecToLight),0);

OUT.color.xyz = float3(1.0,1.0,0.0)*difuseLight;
OUT.color.a = 10*length(normal)*color1.a;

return OUT;
}

GPU-based Volume Ray
Casting

 On principle the same
as CPU ray casting

 Special conditions of
the environment
 Store volume as 3D-

texture, cast rays in
fragment program, ...

Basic Ray Setup

 Start & end point and direction rquired
 Evaluated in shader by rasterization of

the volume bounding box

Back face Front face Ray directions

Standard Optimizations
Possible

• Early ray termination:

– Isosurface: stop on a surface

– DVR: stop when accumulated opacity >
threshold

• Empty space skipping:

– skip transparent samples

– Traverse hierarchy (e.g.: octree)

Empty Space Skipping
• Bricking: use approximation instead

of the bounding volume

Intersection Refinement

• Bisection: fixed step number or
refinement

Advanced Techniques

 Light interaction
 Illumination models

 Reflection
 Shadows
 Semi-transparent shadows

 Ambient occlusion (local, dynamic)
 Scattering (single and multiple, Monte-

Carlo,...)

A few results...

GPU for General
Computations (gpgpu)

 Modern GPUs: Single and double
precision computational units available

 Accessible through special API
 CUDA (NVIDIA)
 Brooks (ATI)
 OpenCL (HW independent, support multiple

CPUs)

 Often used in supercomputers (see
top500.org)

Gpgpu example: Gaussian
filtering

 Filtering of m3 volume by n3 filter
 Theoretical complexity: 3nm3

 GPU requires enough data to process

	Hardware Accelerated Volume Visualization
	A Real-Time VR System
	Real-Time Data Visualization
	Processing Requirements
	HW Acceleration
	General-Purpose Supercomputers
	Special Architectures
	PIXAR
	Pixel-Planes 5
	Volume Rendering Accelerators
	SGI Reality Engine
	The CUBE Project (Kaufman 1988)
	The Ray-Casting Pipeline
	Super-Sampling Along Rays
	Real-Time Classification
	The Phong Illumination Model
	3D Line Cursor and Cut Plane
	3D Line Cursor and Cropping
	The VG500 Board
	VolumePro 500 Summary
	Texture Mapping
	Texture-Mapping HW
	Snímka 23
	Snímka 24
	Snímka 25
	Snímka 26
	Snímka 27
	Snímka 28
	Snímka 29
	Snímka 30
	Snímka 31
	Snímka 32
	Snímka 33
	Snímka 34
	Snímka 35
	Snímka 36
	Snímka 37
	Snímka 38
	Snímka 39

