Transfer Function Issues

Leonid I. Dimitrov & Miloš Šrámek Austrian Academy of Sciences

Volume Visualization

Visually perceivable data presentation

- Understanding, not photorealism
- Simple volume viewing
 - Straightforward presentation of measured data

Assignment of Visual Attributes

- Mapping: Assignment of visual attributes to data:
 - transparency, color, reflectance, surface strength...
- "Area of interest" specification achieved:

Density-based classification

>>> >>>

Space-based segmentation

Mapping by Density Classification, Transfer Functions $TF: \rho(t)=f_{\rho}(d(t)), \ k(t)=f_{k}(d(t))$

- Prerequisites:
 - Areas of interest identified solely by density value
 - Neighbors in histogram are neighbors in space

muscles

voxels

air

fat

CT scan of a human pelvis

Density Classification by Transfer Functions (1)

Bone only

$$R, G, B, \alpha = f(density)$$

Density Classification by Transfer Functions (2)

TF Design Questions

- How to set TFs to get desired appearance
 A typical inverse problem
- How to set TFs for unknown data
 - Meaningful TFs reflect data properties
- Possibilities
 - Hand drawing
 - Inverse design
 - Design galleries
 - Multidimensional Tfs

- ...

Hand-drawn TF

• A typical result:

Inverse Design

 Optimization according to a criterion (He 1996):

Image entropy Image variance Edge content

Combination

Design Gallery

[Marks 1997]

Design Galleries (DG)

- Automatically generated selection of perceptually different images
 - Generated off-line
 - Requires similarity measure (distance between images)
 - No optimality measure required

TF generation by means of Design Galleries

Input vector:

- Opacity TF: 8 control points parameters)
- Color TF 6 subranges (red, green, cyan, blue, magenta)

- Mapping: A volume rendering technique
- Output vector: 8 manualy selected samples (24 values)
- Arrangement
 - Embedding in 2D space, with distances kept
 - Thumbnail images

DG - Labor Division

- DG Designer
 - Input and output vectors, metrics, dispersion and arrangement
 - Must understand the visualization technique
- Computer
 - Does the work
- User
 - Uses the results
 - No deeper insight is necessary

Density Transfer Functions with General Data

	MAR	-
12	te.	
	Very and	

MRI Data:

- The histogram/position model not fulfilled
- No TF can separate the tissues
- Additional info required

Additional Information for Better Rendering

We need to localize the Tfs

- Partial problem solution by multidimensional TFs:
 - |d'| vs. d scatterplots
 - LH-histograms
- Full solution by segmentation

Two- (multi-)dimensional TFs (1)

- TF design paradigm based on |d'| vs. d scatterplot analysis
- Observation: special arc-shaped d/d' scatterplot of blurred data

Two- (multi-)dimensional TFs (2)

18

Two- (multi-)dimensional TFs (3)

• A complex datased: |d'| vs. d scatterplot

Transfer Functions (TF's)

TF Design by LH-Histograms (1)

LH (Low-High) Histogram:

- Downhill and uphill stationary values
- A boundary is represented by a single point in LH histogram

TF Design by LH-Histograms (2)

• A complex datased: LH-Histogram

TF Design by LH-Histograms (3)

Mapping by Spatial Segmentation

- The process of isolating objects of interest from the rest of the scene (Castleman, 1979)
- Full control over property assignment

Mapping: Summary

Transfer function based:

- Color & transparency assigned to voxels
- Semitransparent volumes
- Display of volumes, volume rendering

Segmentation-based

- Unambiguous object definition
- Display of surfaces
 - surface rendering (model based)
 - isosurfacing (no model, directly from 3D data)