Surface Rendering

Leonid I. Dimitrov and Miloš Šrámek

Austrian Academy of Sciences

Volume Visualization by Mapping

• In general:

Measured densities are mapped to visual attributes (transparency, color)

- Extra data structure: a surface model
- Basic primitive: 2D patches (polygons)

Surface Rendering Basics

- Another view/model of volumetric data
- Reduces the volume visualization problem to conventional CG-methods
- Poses new problems:
 - How to find the surfaces?
 - Based on volume data segmentation
 - How to find their normals?
 - From segmented or from original data

Surface Extraction

- Contour tracking (Keppel 75, Fuchs 77)
- Opaque cubes (Herman and Liu 1979)
- Marching cubes (Lorensen and Cline 1987)
- Dividing cubes (,,)
- Marching tetrahedra (,,)
- Marching triangles (Hilton et al, 1996)
- Surface Detection by Ray Casting (Höhne et al, 1988)

Contour Tracking (1)

- Contour detection in slices
- Surface approximation by means of patches
- Rendering: standard approaches

Contour Tracking (2)

Special cases to consider:

- Only convex contours
- Convex and concave contours
- 1 contour n contours
- m contours n contours

Contour Tracking Example

Wireframe model

Triangle Model Flat shading Triangle Model Gourard shading

Contour Tracking Summary

- Complex topologies require complex algorithms
- Ambiguities possible interaction required
- Usually used only for simple objects

Opaque Cubes

- Herman and Liu: "Cuberille"
- Represent "on"-cells as hexahedra
- Render six faces with traditional methods
- "Jaggy" images Opaque Cubes Only

Marching cubes (Lorensen & Cline 1987)

Tessellation on the cell level

- Rectilinear grid
- Basic cell 8 samples
- Thresholding on level T:
 - All values above or below T: no surface in the cell
 - Values both below and above T: cell intersected by surface

Marching cubes

- Processing cell-by-cell (marching)
- Surface cell: surface approximation by 1-5 triangles
 - 256 basic possibilities
 - symmetry "black-white" \Rightarrow 128 combinations
 - rotational symmetry: \Rightarrow only 14 possibilities
- Vertex position: estimated by interpolation along edges

MC: triangulation table

MC ambiguity (1)

 Several tessellation possibilities for certain vertex configuration

- Surface holes may appear Incorrect combination
- Correction needed

MC vs. Isosurfacing

Isosurface definition by interpolation & thresholding

Interpolation surface within a single cell (trilinear interpolation)

Triangulation by the MC algorithm

14

MC example

422 400 triangles

318 500 triangles

Marching Tetrahedra

- Solves ambiguity in MC tessellation
- Disambiguation by cell subdivision in tetrahedra:
 - -5 tetrahedra (2 possibilities)
 - -6 tetrahedra
 - -24 tetrahedra
- Doubles the number of triangles

Cell subdivision in 5 tetrahedra

Tessellation of tetrahedra

No ambiguities

Dividing Cubes

- Specify a threshold value
- Identify voxels bracketing the isosurface
- Project voxel to image plane
 - If voxel projection covers less than a pixel, render it
 - Otherwise subdivide voxel and continue

Surface Extraction Advantages

- Uses known rendering methods
- Can take advantages of hardware
- View/light changes require only rerendering (no pre-processing)
- Compact storage and transmission

Surface Extraction Disadvantages

- Requires binary classification
- Throws away data
- Handles small features poorly

 False positives and negatives
- Requires user intervention sometimes
- Cannot represent translucent data and weak surfaces

Surface shading

- Depth shading
 - Distance to observer stored
 - Shading in postprocessing possible
- Lambert shading

$$I = \vec{n} \cdot \vec{p}$$

- $-\vec{n}$ Surface normal vector
- \vec{p} Light direction
- Phong shading (with highlights)
- Others

Estimation of Surface Normal Vector

Using **Gradient**:

$$\vec{n} = \frac{\vec{g}}{\|\vec{g}\|}$$

$$\vec{g} = \nabla f(x, y, z) = \begin{pmatrix} \partial f & \partial f & \partial f \\ \partial x & \partial y & \partial z \end{pmatrix}$$

- Gradient direction: direction of function's largest grow
- Gradient magnitude: rate of function change in that direction

Estimation of the Gradient Vector

Most common option: central differences:

- Other methods:
 - intermediate differences, ...