Volumetric Data Registration

Leonid I. Dimitrov and Miloš Šrámek GMI Austrian Academy of Sciences

What Is It All About?

- Different modalities provide us with complementary information.
- Combination of those enhances the possibilities for interpretation.
- There is an ever-increasing need for accuracy and speed.
- Registration is NOT fusion!!!

Image Fusion

Simultaneous display of two images

Registered images are assumed

3D Example: MRI+SPECT

Informal Statement of the Registration Problem

Develop a method which transforms geometrically the point samples of one data set to the point samples of another one in such a way that they fit together optimally.

Overview of Registration Methods

- Classification according to different criteria:
 - What is to be registered?
 - How is it to be registered?
 - Why is it to be registered?

What?

- Inter- vs. Intra-modality
- Inter- vs. Intra-subject
- Image-to-atlas
- 2D vs. 3D

How?

- Rigid affine non-linear
- Points lines surfaces voxels
- Interactive semi-automatic automatic

Why?

- Diagnostics
- Treatment planning
- Image-guided surgery
- Treatment evaluation

Popular Methods

- Stereotactic frame
- Fiducial marks
- Principal axes
- Atlas-oriented
- Surface similarity
- Voxel-based

Formal Statement of the Problem

• Definitions:

Let

$M = \left\{ f_m \right\}$ is localizable model feature

and $O = \left\{ f_o \right\}$ is localizable object feature $\right\}$

be model resp. object.

Find a matching transformation

$$\tau: R^3 \to R^3$$

specified by a *parameter vector*

$$v \in N \subset R^k$$

where

$$N = \left\{ v \in \mathbb{R}^k : r_0^{\min} \le v_0 \le r_0^{\max}, \cdots, r_k^{\min} \le v_k \le r_k^{\max} \right\}$$

is the feasible region

such that a cost function

 $C: \mathbb{R}^k \rightarrow \mathbb{R}$

takes its optimum in

 $v_{opt} = \operatorname{argmin} \{C(v) | v \in N\}$

Matching Transformations

Rigid-body transformations

- Translations
- Rotations
- Scalings
- Affine transformations
 - Reflexion
 - Stretch
 - Skew
- Non-linear transformations

Cost Functions

- Basic types:
 - Surface-based
 - Employ spatial information
 - Density- (value-) based
 - Employ histogram information
- Basic property
 - Global minimum determines anatomical optimum

Surface-based Cost Functions

- Features are surface points
- Euclidean distance of a point P to the model M:

 $d(P) = \min_{R \in M} \|P - R\|$

• Surface similarity measure:

 $C(v) = \sum_{i=1}^{N} d^{2}(\tau_{v}(P_{i}))$

Density-Based Similarity Functions

- Cross-correlation
 - Multiplicative
 - Subtractive
- Scatter-plot based
 - Histogram moments
 - Information entropy
 - Mutual information

Multiplicative Cross-correlation

Defined as

$$C(v) = \frac{\sum_{i=1}^{N} g_m(\tau_v(P_i)) \cdot g_o(P_i)}{\sqrt{\sum_{i=1}^{N} g_m^2(\tau_v(P_i))} \cdot \sqrt{\sum_{i=1}^{N} g_o^2(P_i)}}$$

• where g_m , g_o are model resp. object densities.

Subtractive Cross-correlation

• Absolute differences instead of products:

$$C(v) = \frac{\sum_{i=1}^{N} |g_{m}(\tau_{v}(P_{i})) - g_{o}(P_{i})|}{\sqrt{\sum_{i=1}^{N} g_{m}^{2}(\tau_{v}(P_{i}))} \cdot \sqrt{\sum_{i=1}^{N} g_{o}^{2}(P_{i})}}$$

Feature-Space Histogram or Scatter-Plot

 Maps the set of ordered density pairs into a set of counts:

 $S: G_o \times G_m \rightarrow G_s \subset N$

• Each value (scatter-plot pixel) represents the number of such ordered pairs: $S_{\tau}(g_{o}, g_{m}) = |\{g_{o}(P), g_{m}(\tau(P))\}||$

Scatter-plot: Perfect Alignment

Scatter-plot: Misalignment

Inter modality registration

- Values cannot be directly compared.
- Used:

_ ...

- Joint probability
- Mutual information
- Histogram entropy

Similarity Functions Summary

- The quality of registration is measured by similarity functions
- The registration process searches a function parameter space for an optimal solution
- There is a great diversity of them
- They are subject of active research

Optimization Task

- The problem is
 - Multivariate
 - Continuous
 - Non-linear
 - Constrained
- Solution: numerical algorithms

Optimization Methods

- Exhaustive search
- Gradient-based
- Simulated annealing
- Genetic algorithms

2D cost function landscape 26

Dual Modality Scanners

- Two imaging modalities in one device
- Registered images directly produced

Dual Modality Scanners

28

References

- JBA Maintz and MA Viergever (1998) A survey of medical image registration. *Medical Image Analysis* 2(1), 1-36.
- LG Brown (1992) survey of image registration techniques. ACM Computing Surveys 24(4), 325-376.
- PJM van Laarhoven and EHJ Aarts (1987) Simulated Annealing: Theory and Applications. Series: Mathematics and its Applications, D. Reidel Publishing company, Dordrecht.

Α