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Motivation example (4)
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Overview

 Sampling of continuous signals
 Filtering of discrete signals
 Reconstruction of continuous signals
 Sampling aspects of volume rendering
 Voxelization of geometric objects



Why Sampling and 
Reconstruction?

 Real-world signals are continuous
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Signal and Spectrum

 FT: decomposition of a signal into a sum of 
sinusoids, determined by frequency, amplitude 
and phase

 f(x) -  representation in the spatial domain 
 F() -  representation in the  frequency domain

Fourier
transformation

Signal Spectrum
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Spatial / time domain Frequency/spectral domain



Fourier Transform

 Direct FT:

 Inverse FT:
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Examples

sin(x)+sin(2x)
Spectrum of sin(x)+sin(2x)

Spectrum music f

Spectrum white noise



Typically Drawn Spectrum



|F|
 Symmetric

 F is complex, we draw |F|

 Falling towards high 
frequencies

 Band limited: has 
maximum frequency 

max



Convolution (1)

 f * h : a weighted sum of f with weight 
function h placed at s 

 Applications:
 Smoothing, noise removal, edge 

detection, ...

 Other names: filter (e.g. lowpass)



Convolution (2)

 Continuous case:
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 Discrete case:
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f: signal, h: convolution kernel



Convolution Theorem

         HFthtfFT

 Convolution in spatial (frequency) 
domain corresponds to multiplication 
in frequency (spatial) domain

         HFthtfFT



Dirac's δ-function

 Can be used to describe the sampling 
process

 Properties:
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Sampling

 Input signal:

 Ideal sampling function:

 Sampled signal:



Sampling in the Frequency 
Domain

Spectrum of the sampled signal:
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S (spectrum of the sampling function):

and



Sampling in the Frequency 
Domain

 Sampling a signal causes replication of its 
spectrum in the frequency domain

 Nyquist criterion:  
ms  2



Sampling of a Signal

In the spatial domain

In the frequency domain



Real-world Sampling 
Process

 The sampling function has a volume
 Can be approximated by a Gaussian:

 A Gaussian is a low-pass filter, i.e. it 
causes blurred image, blunt edges



Reconstruction

Direct reconstruction of a continuous
signal from discrete samples:
 The spectrum replicas have to be 

suppressed by a reconstruction filter
 The ideal reconstruction filter is the 

box function:
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Reconstruction



Ideal Reconstruction Filter
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Ideal Reconstruction Filter

 Bounded support in the frequency domain, 
but unbounded in the spatial domain

 Can’t be realized practically
 It has to be approximated (bounded):

 The approximations have unbounded support 
in the frequency domain
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Problems with the 
Reconstruction (aliasing)

 If the Nyquist 
criterion is not 
fulfilled

 If the 
reconstruction 
filter is too big or 
too small



Prealiasing

 Wrong frequencies appear if the Nyquist criterion 
is not fulfilled:



Postaliasing

 Wrong frequencies appear also if the 
reconstruction filter support is too broad 



Classification of 3D 
reconstruction filters

 Separable:

 Sequential application along the axes
 Computational complexity: 3n

 Spherically symmetrical: 
 Computational complexity: n3



Separable Filters
 Order 0: nearest neighbor

 Order 1: linear interpolation

 Order 3: cubic filters:
 Cubic B-spline
 Catmull-Rom spline

5.0 if  1  xhs

1 if  1  xxhs



Nearest Neighbor

Filter Spectrum



Nearest Neighbor Filtering



Nearest Neighbor Filtering



Linear Interpolation

Filter Spectrum



Linear Filtering



Linear Filtering



Trilinear Reconstruction 
Filter



Truncated sinc Filter

Filter Spektrum



Truncated sinc Filtering



Truncated sinc Filtering



Catmull-Rom Spline
 Piecewise cubic, C1-smooth



Catmul-Rom Spline

Filter Spectrum



Catmull-Rom Spline Filtering



Catmull-Rom Spline Filtering



Other Separable Filters

 Gaussian filter

 Windowed sinc filter



An Example

FN = 10, sampling  40 x 40 x 40



Reconstruction by the Trilinear 
Filter



Reconstruction by the Cubic 
B-spline Filter



Reconstruction by the 
Catmull-Rom Spline Filter



Reconstruction by the 
Windowed  sinc Filter
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