... Sampling Filtering Reconstruction ...

Leonid I. Dimitrov & Miloš Šrámek Commission for Scientific Visualization Austrian Academy of Sciences

Motivation example (2)

Motivation example (3)

Motivation example (4)

Nice picture

Poor picture

Overview

Sampling of continuous signals
Filtering of discrete signals
Reconstruction of continuous signals
Sampling aspects of volume rendering
Voxelization of geometric objects

Why Sampling and Reconstruction?

Real-world signals are continuous

Computer representations are discrete

Signal and Spectrum

Spatial / time domain

Frequency/spectral domain

- FT: decomposition of a signal into a sum of sinusoids, determined by frequency, amplitude and phase
- f(x) representation in the spatial domain
- $F(\omega)$ representation in the frequency domain

Fourier Transform

 $f(s) \leftrightarrow F(\omega)$

• Direct FT:

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(s) e^{-i\omega s} ds$$

Inverse FT:

$$f(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega) e^{i\omega s} d\omega$$

$$\omega = 2\pi f$$

Examples

Spectrum white noise

Typically Drawn Spectrum

Symmetric

F is complex, we draw |F|

Falling towards high frequencies
Band limited: has maximum frequency @maximum fre

Convolution (1)

• f * h : a weighted sum of f with weight function h placed at s

• Applications:

Smoothing, noise removal, edge detection, ...

Other names: filter (e.g. lowpass)

Convolution (2)

Continuous case:

$$f(s) * h(s) = \int_{-\infty}^{\infty} f(s) \cdot h(s - \tau) d\tau$$

• Discrete case: $f[n] * h[n] = \sum_{k} f[k] \cdot h[n-k]$

f: signal, h: convolution kernel

Convolution Theorem

 Convolution in spatial (frequency) domain corresponds to multiplication in frequency (spatial) domain

$$FT\{f(t) * h(t)\} = F(\omega) \cdot H(\omega)$$
$$FT\{f(t) \cdot h(t)\} = F(\omega) * H(\omega)$$

Dirac's δ-function

Can be used to describe the sampling process • **Properties**: X

$$\int_{-\infty}^{\infty} \delta(\mathbf{x}) = \mathbf{1}$$

$$\frac{\delta(x-x_0)}{x_0}$$

$$f(\mathbf{x})\delta(\mathbf{x}-\mathbf{x}_0)=f(\mathbf{x}_0)\delta(\mathbf{x}-\mathbf{x}_0)$$

$$\int_{-\infty}^{\infty} f(\mathbf{x}) \delta(\mathbf{x} - \mathbf{x}_0) = f(\mathbf{x}_0)$$

Sampling

Input signal:

$$f_I(x,y)$$

Ideal sampling function:

$$s(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x - i\Delta_x, y - j\Delta_y)$$

Sampled signal:

$$f_s(x,y) = f_I(x,y)s(x,y)$$

Sampling in the Frequency Domain

Spectrum of the sampled signal:

$$F_{s}(\boldsymbol{\omega}_{x},\boldsymbol{\omega}_{y}) = \frac{1}{4\pi^{2}} F_{I}(\boldsymbol{\omega}_{x},\boldsymbol{\omega}_{y}) * S(\boldsymbol{\omega}_{x},\boldsymbol{\omega}_{y})$$

S (spectrum of the sampling function):

$$S(\omega_x, \omega_y) = \frac{4\pi^2}{\Delta_x \Delta_y} \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(\omega_x - i\omega_{xs}, \omega_y - i\omega_{ys})$$

and

$$\omega_{xs} = \frac{2\pi}{\Delta_x}, \omega_{ys} = \frac{2\pi}{\Delta_y}$$

Sampling in the Frequency Domain

 Sampling a signal causes replication of its spectrum in the frequency domain

Nyquist criterion:

$$\omega_s > 2\omega_m$$

Sampling of a Signal

In the spatial domain

In the frequency domain

Real-world Sampling Process

The sampling function has a volume
Can be approximated by a Gaussian:

$$s_r(x, y, z) = \exp\left(-\left(\frac{x^2}{2\sigma_x} + \frac{y^2}{2\sigma_y} + \frac{z^2}{2\sigma_z}\right)\right)$$

 A Gaussian is a low-pass filter, i.e. it causes blurred image, blunt edges

Reconstruction

- Direct reconstruction of a continuous signal from discrete samples:
- The spectrum replicas have to be suppressed by a reconstruction filter
- The ideal reconstruction filter is the box function:

$$R(\boldsymbol{\omega}_{x},\boldsymbol{\omega}_{y}) = \begin{cases} K \text{ if } |\boldsymbol{\omega}_{x}| \leq \boldsymbol{\omega}_{xc} \wedge |\boldsymbol{\omega}_{y}| \leq \boldsymbol{\omega}_{yc} \\ 0 \text{ else} \end{cases}$$

Reconstruction

Ideal Reconstruction Filter

Ideal Reconstruction Filter

$$box(\omega) \leftrightarrow sinc(s) = \frac{sin(s)}{s}$$

- Bounded support in the frequency domain, but unbounded in the spatial domain
- Can't be realized practically
- It has to be approximated (bounded):
 - The approximations have unbounded support in the frequency domain

Problems with the Reconstruction (aliasing)

If the Nyquist criterion is not fulfilled

If the reconstruction filter is too big or too small

Prealiasing

Wrong frequencies appear if the Nyquist criterion is not fulfilled:

Postaliasing

Wrong frequencies appear also if the reconstruction filter support is too broad

Classification of 3D reconstruction filters

• Separable:

$$h(x,y,z) = h_s(x) h_s(y) h_s(z)$$

Sequential application along the axes
 Computational complexity: *3n* Spherically symmetrical:
 Computational complexity: *n*³

Separable Filters

Order 0: nearest neighbor

$$h_s = 1$$
 if $|x| < 0.5$

Order 1: linear interpolation

$$h_s = 1 - |x|$$
 if $|x| < 1$

Order 3: cubic filters:
 Cubic B-spline
 Catmull-Rom spline

Nearest Neighbor

Filter

Spectrum

Nearest Neighbor Filtering

Nearest Neighbor Filtering

Linear Interpolation

Filter

Spectrum

Linear Filtering

Linear Filtering

Trilinear Reconstruction Filter

Truncated *sinc* **Filter**

Filter

Spektrum

Truncated sinc Filtering

Truncated *sinc* **Filtering**

Catmull-Rom Spline

Piecewise cubic, C1-smooth

Catmul-Rom Spline

Filter

Spectrum

Catmull-Rom Spline Filtering

Catmull-Rom Spline Filtering

Other Separable Filters

Gaussian filter

$$h_s(x) = \exp(-\frac{x^2}{2\sigma^2}), \quad |x| < x_m$$

• Windowed sinc filter

$$h_s(x) = \left(1 + \cos(\frac{\pi x}{x_m})\right)\operatorname{sinc}(\frac{4x}{x_m}), \quad |x| < x_m$$

An Example

$F_{N} = 10$, sampling 40 x 40 x 40

Reconstruction by the Trilinear Filter

Reconstruction by the Cubic B-spline Filter

Reconstruction by the Catmull-Rom Spline Filter

Reconstruction by the Windowed *sinc* Filter

