Acquisition of 3D Data
 Tomographic Techniques

Leonid I. Dimitrov and Milos Sramek

3D Data

- Animation, film: a sequence of images with time as the third coordinate:

$$
[x, y, t]
$$

- Volume data: a sequence of images with space as the third coordinate:

$$
[x, y, z]
$$

- Volume data in general: a set of data samples measured on a grid with certain properties

Scattered Points

- Sample position
- [$\left.x_{i j} y_{j}, \mathbf{z}_{k}\right]$
- Neighborhood relation:
- None

Unstructured Grid

- Sample position
- $\left[x_{p}, y_{y}, z_{p}\right]$
- Neighborhood
relation:
■ Explicit $i-k, i-l, \ldots$

Structured Grid

- Sample position: abased on coordinates at [i,j,k]
- Neighborhood relation:
- Implicit, neighbors from the grid

Rectilinear Grid

- Sample position:
- Coordinates [i,j,k]
- Distance between X, Y and \mathbf{Z} planes
- Neighborhood relation:
- Implicit, neighbors from the grid

Regular Grid

- Sample position:
- Coordinates $[i, j, k]$
- Cell size [$X, Y, Z]$
- Neighborhood relation:
- Implicit, neighbors from the grid

Cartesian Grid

- Sample position:
- Coordinates [i,j,k]
- Cell dimension X
- Neighborhood relation:
- Implicit, neighbors from the gria

Cartesian Grid and its Elements

Basic elements of volume data - Sample:

- Dimensionless point with value - Cell:
- 8 (4) samples in vertices of a cube
- Vowel

Sample

- Homogeneous cube centered at sample position
- Analogue of the 2D pixel

Acquisition of Volumetric Data

- 3D imaging techniques
- Anatomically oriented techniques:
- Computer tomography-CT, magnetic resonance imaging-MRI, ultrasound imaging-US
- Physiologically oriented techniques:
- Positron emission tomography-PET, single-photon emission tomographySPECT, functional MRI
- Synthetic data
- Voxelization

Computed Tomography (CT)

- Also: Computer Aided Tomography (CAT, CAT scan)
- Principle:
\square Measurement of X -ray attenuation along a viewing ray (projections)

- Production of images: reconstruction from projections

A CT Tomograph

A Sample CT Scan

Measurement of Projections

- Standard setup:

- cca 200 1D projections for one slice

Measurement of Projections

- Spatial configuration of source and detector arrays:
- Aligned rotation
- 180 deg

Recent Setup: Fan-Beam Spiral CT

Standard CT vs. Spiral CT

25 Slices in
> 2 Minutes

25 Slices in
25 Seconds

Multi-Detector CT Scanner

State of the art:

- Detectors
- Up to 256
- Spacing < 1mm
- Scanning speed:
-1m/30s

Reconstruction from Projections

- Theory:

■ Johann Radon

- First Tomograph:
\square Godfrey Hounsfield
- Nobel prize 1979
- Reconstruction methods:

Source: Wikipedia

- Algebraic methods
- Filtered backprojection
- Fourier methods

Filtered Backprojection

- For all projections:
\square Projection filtration (high pass filter, derivative)
\square Distribution of the filtered projection to the image in the direction of the projection

2
4
8
All

CT Tomogram - an Example

Dual Energy CT

- Attenuation coefficient μ depends on the wavelength
- Scanning with two X-ray lamp voltages (energies)
- Advantage: Discrimination of tissue types

Composited

Hounsfield Unit

- Normalization of measured values to a -1000 - 3095 (12 bit) scale:

Substance	Value [HU]
Air	-1000
Water	0
Fat	$70-120$
Soft tissues	$15-80$
Bone	>1000

- Tissue density is defined by its physical properties

CT Data Properties

- Axial slices $\mathbf{0 . 5 - 1 0 ~ m m ~ t h i c k ~}$
- Images 256×256 to 512×512 pixels of $0.5-2 \mathrm{~mm}$ side
- Up to 2000 images per study
- High spatial resolution
- Consistent values (HU scale)
- X-ray irradiation

Application Fields

- Contrast determined by tissue density:
-Bone imaging
\square Calcifications
- Inflammations
- Hematomata
- Tumors
- Imaging with contract agent:

■ Blood vessels, vessel lumen

Overview

- Computer tomography (CT, CAT)
- Magnetic resonance imaging (MRI)
- fMRI
- SPECT
- PET

Magnetic Resonance Imaging

- Nuclear Magnetic Resonance (NMR) Magnetic Resonance Imaging (MRI)
- Physical principle
- Interaction of atom nuclei with an external magnetic field (resonance)
- Requirement: Nonzero magnetic or spin moment of the atoms
- Resonance
- Energy transfer between coupled systems with equal characteristic frequency
- Example: The Tacoma Narrows bridge

Common NMR Active Nuclei

Isotope	Spin I	$\%$ abundance	γ $\mathrm{MHz} / \mathrm{T}$
${ }^{1} \mathrm{H}$	$1 / 2$	99.985	42.575
${ }^{2} \mathrm{H}$	1	0.015	6.53
${ }^{13} \mathrm{C}$	$1 / 2$	1.108	10.71
${ }^{14} \mathrm{~N}$	1	99.63	3.078
${ }^{15} \mathrm{~N}$	$1 / 2$	0.37	4.32
${ }^{17} \mathrm{O}$	$5 / 2$	0.037	5.77
${ }^{19} \mathrm{~F}$	$1 / 2$	100	40.08
${ }^{23} \mathrm{Na}$	$3 / 2$	100	11.27
${ }^{31} \mathrm{P}$	$1 / 2$	100	17.25

Spins in a Magnetic Field

Atoms with uncompensated

 magnetic moment

M - Magnetization (material)
B - Induction (field strength)

Spin in a Magnetic Field (Zeeman Spliting, Spin ½)

1.5T, T=310K,
\Rightarrow Total magnetization M is parallel to B_{0}

Spin in a Magnetic Field

- μ rotates around B_{0}

- B_{0} - external mg. field
- μ - spin moment
\square rotates around B_{0} with Larmor frequency

$$
f_{L}=\gamma B_{0}
$$

- γ - gyromagnetic ratio ($\gamma=42.58 \mathrm{MHz} / \mathrm{T}$ for H)
- Total magnetization:

$$
\mathrm{M}=\sum \mu_{\mathrm{i}}
$$

MRI System Block Diagram

Magnetic Field of a Tomograph

- Induced magnetic field:

Electromagnets

- Superconductive electromagnets
- Permanent magnets
- Field strength

■ 0.5T - 3T, (up to 15T for research)

- Earth's mg. field : 0.3-0.7 x 10-5T

Principle of MR Imaging

Absorption and emission of energy by spins in external magnetic field (resonance)

- Equilibrium: \mathbf{M} || B_{0} : Uncoupled μ_{i} vectors:

$$
M_{z}=M, \quad M_{x y}=0
$$

- Absorption of RF (radiofrequency) energy: excitation($\mathbf{f}=\mathrm{f}_{\mathrm{L}}$)
- Transition to higher energy state: $\mathrm{M}_{\mathrm{z}}<\mathbf{M}$ owing to vector μ_{i} flipping
- Coupled rotation of $\mu_{i:} M_{x y} \neq 0$
\square Measurable signal due to $\mathbf{M}_{\mathrm{x}} \mathrm{y}$
- Relaxation: return to equilibrium

Spin Excitation and Relaxation

Equilibrium

Relaxation: Return back to equilibrium.

Relaxation

Return to equilibrium state after the RF pulse

- Longitudinal relaxation (spin-lattice, rate T_{1}):
- Energy transfer to surrounding tissue -Flipping of μ_{i} vectors to original orientation
- Transversal relaxation (spin-spin, rate T_{2}):
- Decoupling of μ_{i} due to field inhomogeneities and spin-spin interaction
- Measured signal during the relaxation - FID (Free Induction Decay)

Tissue Contrast

- Both T_{1} and T_{2} depend on the chemical environment of the nucleus (spin).

TE: time of measurement, echo time

Tissue Contrast

- Effect of TE (echo time, time of measurement)

Tissue Contrast

- Effect of echo time

Tissue Contrast

- Effect of echo time

Tissue Contrast

- Effect of echo time

MRI Measurement

RF pulse (excitation)

M_{z}

- TR: repetition time
- TE: excitation time, moment of measurement

T_{1}, T_{2} and PD Images

- Different combinations of TR and TE yield different tissue contrast:
- Long TR (>1500ms)

Short TE ($<25 \mathrm{~ms}$) PD (Proton Density) weighting (no T_{1} and T_{2} influence)
Long TE (>50ms) T_{2} weighting

- Short TR (<500ms)

Short TE (<25ms) T_{1} weighting

T_{1}, T_{2} and PD Images

MRI Overview

- Physical Background
- Excitation and Relaxation
$-\mathrm{T}_{1}$ Relaxation
- Spin Echo and T_{2} Relaxation
- Coding of Spatial Information
\square Slice Selection
-Read-out Gradient
\square Phase Encoding

Spatial Localization in MRI

- Position encoding by means of gradient fields:
- Z-gradient: slice selection by changing the Larmor frequency $f_{L}=\gamma\left(B_{0}+G_{z} \cdot \mathbf{z}\right)$
\square Z-gradient is applied during the RF pulse

Slice Selection

X, Y encoding

- Similar tricks to encode the x and y coordinates
 - Only one row measured in one excitation

Examination Time

- Image is measured row-by-row
- Basic formula: T = TR x R x N [ms]
-TR : repetition time
■R: number of image rows
$\square \mathrm{N}$: Number of accumulations (noise)
Example: T = $2000 \times 256 \times 2=17 \mathrm{~min}$
- Speed-up:
- Low excitation angle \Rightarrow shorter TR (low energy pulse)
- Multislice techniques

Multislice Technique

- Interleaved excitation of several (64) slices:

Imaging in Other Planes

- B_{0} always remains in the same direction
- Choice of imaging plane depends on the order of gradients' application
- Oblique planes: simultaneous application of 2 gradients

Sagittal

Coronal

Transversal

Scanning Protocols

- Protocol: a sequence of pulses, gradients and signal measurements
- Protocols influence image properties and examination time
- Patented and sold by scanner vendors
- FISP, FAST, FLASH, STAGE, STERF

Properties of MR data

- Measurement in arbitrary planes
- Typically 256x256 (512x512)pixels
- No absolute scale for measured values
- Significant level of noise
- Good soft tissue contrast
- Spatial inhomogeneities - bias
- No irradiation

MR data - examples

T_{1}

PD

MRA

Overview

- Computer tomography (CT, CAT)
- Magnetic resonance imaging (MRI)
- fMRI
- SPECT
- PET

Functional MRI (fMRI)

- Assumption: Active brain area needs more oxygen than inactive ones
- fMRI: statistical detection of areas with oxygenated blood flow
- Visualization by merging with regular MRI data

fMRI Example

Right hand finger tapping at 2 Hz

Overview

- Computer tomography (CT, CAT)
- Magnetic resonance imaging (MRI)
- fMRI
- Emission Tomography -SPECT
- PET

Emission Tomography

ECT - Emission computed tomography

- Introduction of a radioactive agent into the patient's body (tagged substance)
- Agent's distribution based on metabolism
- Measurement of its spatial distribution

SPECT

Single-Photon Emission Computed Tomography

- Isotopes emitting γ-photons (Tc-99, I125, l-131)
- Uniform distribution of photons in all directions
- Scanner - a set of detectors with collimators - gamma camera

Gamma Camera

Gamma Camera

SPECT data

CT-SPECT

- Combination of different techniques supplementary information
- Registration is required
- Not a trivial task
- Solution: CT-SPECT scanner

CT-SPECT (2)

CT-SPECT (3)

PET

Positron Emission Tomography

- $\beta+$ decay (positrons)
- Annihilation - a pair of photons with energy 511 keV in opposite directions
- Detection without collimators: registration of concurrent events in detector pairs
- 3D measurement, statistical reconstruction (MRF)

PET Scanner

PET Scan

PET Scanners

Research prototype at BNL (1961)

PET today

Combined PET/CT, MRI

PET / MRI

Other Imaging Modalities

- Ultrasound
- Confocal microscopy
- Electrical impedance tomography
- Optical coherence tomography

Overview

- Computed tomography (CT / CAT)
- Magnetic resonance imaging (MRI)
- fMRI
- SPECT
- PET
- Synthetic Data

Voxelization of Geometric Objects

- Preparation of "synthetic" data
- A CG alternative
- Simultaneous visualization of geometric and volume data
- Modeling of volumetric properties (e.g. weathering)

Surface and Volume Graphics

- Surface Graphics: Geometric rendering of Continuous Spatial Models (CSM)
- Volume Graphics: Voxelization of a CSM, manipulation, and volume rendering of a Volumetric Mode (VM)

Voxelization

- A process of approximating a continuous geometric primitive in the 3D discrete space
- The result of this process

Binary voxelization
Voxels \& occupancy $O \in\{0,1\}$ (\{Background, Foreground\}, \{Black, White\})

Non-binary voxelization (fuzzy, filtered)
Grid points \& densities $D \in R$

Binary vs. nonbinary

Binary

Non binary

Non-binary Voxelization

Suppression of aliasing in 3D model by smooth density transition in the surface area

- Truncated distance field
- Surface reconstruction - Interpolation and thresholding

Voxelized object

Solids in Truncated Distance Fields

Voxelization by Direct Distance Computation

Simple primitives (sphere, torus, polygon)
Example: Voxelization of a triangle:

- Bounding box
- Voxel-by-voxel update of distances to plane, edges \& vertices
- Density according to the minimal distance

Voxelized Polygonal Model

Voxelization of Parametric Surfaces

$P(u, v)=[x(u, v), y(u, v), z(u, v)]$
$[u, v] \in\left(u_{0}, u_{1}\right) \times\left(v_{0}, v_{1}\right)$

1. Splatting - adding small voxelized balls 2. Approx uniform sampling by binary domain subdivision

Domain subdivis.

Surface subdivision

Voxelization of Parametric Surfaces

Voxelization of Implicit Solids

$$
\{[\mathrm{x}, \mathrm{y}, \mathrm{z}]: \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})<0\}
$$

- Distance estimation by linear approximation:

$$
d(x, y, z)=\frac{f(x, y, z)}{\left\|f^{\prime}(x, y, z)\right\|}
$$

Voxelization of Implicit Solids

CSG Operations

Operation

Density

Color
Intersection

Union

$$
\begin{aligned}
& \mathrm{d}_{A^{*} \mathrm{~B}}= \\
& \operatorname{Min}\left(\mathrm{d}_{\mathrm{A}}, \mathrm{~d}_{\mathrm{B}}\right)
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{C}_{\mathrm{A}^{*} \mathrm{~B}}= \\
\text { WA(A,B)}
\end{gathered}
$$

$\mathrm{d}_{\mathrm{A}+\mathrm{B}}=$
$\operatorname{Max}\left(\mathrm{d}_{\mathrm{A}}, \mathrm{d}_{\mathrm{B}}\right)$
$\mathrm{C}_{\mathrm{A}+\mathrm{B}}=$ WA(A,B)

Difference
$\mathrm{d}_{\mathrm{A}-\mathrm{B}}=$
$\operatorname{Max}\left(0, \mathrm{~d}_{\mathrm{A}}-\mathrm{d}_{\mathrm{B}}\right)$
$\mathrm{C}_{\mathrm{A}-\mathrm{B}}=\mathrm{C}_{\mathrm{A}}$
if $\mathrm{d}_{\mathrm{A}-\mathrm{B}}>0$

CSG Operations

$$
a^{*}(b+c)
$$

a
b

