Acquisition of 3D Data Tomographic Techniques

Leonid I. Dimitrov and Milos Sramek

3D Data

 Animation, film: a sequence of images with time as the third coordinate: [x,y,t]

 Volume data: a sequence of images with space as the third coordinate:

[x,y,z]

Volume data in general: a set of data samples measured on a grid with certain properties

Scattered Points

Sample position

 [x_i, y_j, z_k]

 Neighborhood relation:

 None

Unstructured Grid

Sample position

[x_p, y_p, z_p]

Neighborhood relation:

Explicit *i-k*, *i-l*, ...

Structured Grid

 Sample position:
 based on coordinates at [i,j,k]

Neighborhood relation:

Implicit, neighbors from the grid

Rectilinear Grid

- Sample position:
 Coordinates [i,j,k]
 Distance between
 - **X**,**Y** and **Z** planes

Neighborhood relation:

Implicit, neighbors from the grid

Regular Grid

Sample position:
Coordinates [i,j,k]
Cell size [X,Y,Z]
Neighborhood relation:
Implicit, neighbors from the grid

Cartesian Grid

Sample position:

Coordinates [i,j,k]
Cell dimension X

Neighborhood relation:

Implicit, neighbors from the grid

Cartesian Grid and its Elements

Voxel

- **Basic elements of volume data**
- Sample:
 - Dimensionless point with value
- Cell:
- 8 (4) samples in vertices of a cube Sample
 - Homogeneous cube centered at sample position
 Analogue of the 2D pixel

Acquisition of Volumetric Data

3D imaging techniques

- Anatomically oriented techniques:
 - Computer tomography-CT, magnetic resonance imaging-MRI, ultrasound imaging-US
- Physiologically oriented techniques :
 - Positron emission tomography-PET, single-photon emission tomography-SPECT, functional MRI

Synthetic data
 Voxelization

Computed Tomography (CT)

 Also: Computer Aided Tomography (CAT, CAT scan)

• Principle:

Measurement of X-ray attenuation along a viewing ray (projections)

$$S = \int \mu(l) \ dl$$

Production of images: reconstruction from projections

A CT Tomograph

A Sample CT Scan

Measurement of Projections

• Standard setup:

cca 200 1D projections for one slice

Measurement of Projections

Spatial configuration of source and detector arrays:
 Aligned rotation
 180 deg

Recent Setup: Fan-Beam Spiral CT

Standard CT vs. Spiral CT

25 Slices in > 2 Minutes

25 Slices in 25 Seconds

Multi-Detector CT Scanner

State of the art:

Detectors

 Up to 256
 Spacing < 1mm

 Scanning speed:

 1m/30s

Reconstruction from Projections

Theory: Johann Radon First Tomograph: Godfrey Hounsfield Nobel prize 1979 Reconstruction methods: Algebraic methods Filtered backprojection Fourier methods

Source: Wikipedia

Filtered Backprojection

For all projections: Projection filtration (high pass filter, derivative) Distribution of the filtered projection to the image in the direction of the projection

CT Tomogram - an Example

Dual Energy CT

- Attenuation coefficient µ depends on the wavelength
- Scanning with two X-ray lamp voltages (energies)
- Advantage: Discrimination of tissue types

Hounsfield Unit

Normalization of measured values to a -1000 – 3095 (12 bit) scale:

Substance	Value [HU]	
Air	-1000	
Water	0	
Fat	70 – 120	
Soft tissues	15 – 80	
Bone	>1000	

 Tissue density is defined by its physical properties

CT Data Properties

- Axial slices 0.5-10 mm thick
- Images 256 x 256 to 512 x 512 pixels of 0.5-2 mm side
- Up to 2000 images per study
- High spatial resolution
- Consistent values (HU scale)
- X-ray irradiation

Application Fields

Contrast determined by tissue density: Bone imaging Calcifications Inflammations Hematomata **Tumors** Imaging with contract agent: Blood vessels, vessel lumen

Overview

Computer tomography (CT, CAT)
Magnetic resonance imaging (MRI)
fMRI
SPECT
PET

Magnetic Resonance Imaging

 Nuclear Magnetic Resonance (NMR) Magnetic Resonance Imaging (MRI)

• Physical principle

- Interaction of atom nuclei with an external magnetic field (resonance)
- Requirement: Nonzero magnetic or spin moment of the atoms
- Resonance
 - Energy transfer between coupled systems with equal characteristic frequency
 - Example: The Tacoma Narrows bridge

Common NMR Active Nuclei

Isotope Spin I	Spin	0⁄0	γ
	abundance	MHz/T	
$^{1}\mathrm{H}$	1/2	99.985	42.575
² H	1	0.015	6.53
¹³ C	1/2	1.108	10.71
^{14}N	1	99.63	3.078
¹⁵ N	1/2	0.37	4.32
¹⁷ O	5/2	0.037	5.77
19 F	1/2	100	40.08
²³ Na	3/2	100	11.27
³¹ P	1/2	100	17.25

Spins in a Magnetic Field

Spin in a Magnetic Field (Zeeman Splitting, Spin ¹/₂)

1.5T, T=310K,

 \Rightarrow Total magnetization M is parallel to B_0

Spin in a Magnetic Field

MRI System Block Diagram

Magnetic Field of a Tomograph

Induced magnetic field: Electromagnets Superconductive electromagnets Permanent magnets Field strength 0.5T – 3T, (up to 15T for research) Earth's mg. field : 0.3 - 0.7 x 10⁻⁵T

Principle of MR Imaging

Absorption and emission of energy by spins in external magnetic field (resonance)
 Equilibrium: M || B₀: Uncoupled μ_i vectors:

$$M_z = M, \quad M_{xy} = 0$$

 Absorption of RF (radiofrequency) energy: excitation(f = f_L)

 Transition to higher energy state: M_z< M owing to vector μ_i flipping
 Coupled rotation of μ_i: M_{xy} ≠ 0
 Measurable signal due to M_{xy}

 Relaxation: return to equilibrium

Spin Excitation and Relaxation

Equilibrium

Excitation by RF impulse

Relaxation: Return back to equilibrium.

Relaxation

Return to equilibrium state after the RF pulse • Longitudinal relaxation (spin-lattice, rate T₁): Energy transfer to surrounding tissue
 Flipping of µ_i vectors to original orientation Transversal relaxation (spin-spin, rate T₂): Decoupling of µ_i due to field inhomogeneities and spin-spin interaction Measured signal during the relaxation
 FID (Free Induction Decay)

Both T₁ and T₂ depend on the chemical environment of the nucleus (spin).

Effect of TE (echo time, time of measurement)

Effect of echo time

Effect of echo time

Effect of echo time

MRI Measurement

• TR: repetition time

• TE: excitation time, moment of measurement

T_1 , T_2 and PD Images

Different combinations of TR and TE yield different tissue contrast:
 Long TR (>1500ms)
 Short TE (<25ms) PD (Proton Density) weighting (no T₁ and T₂ influence)
 Long TE (>50ms) T₂ weighting

Short TR (<500ms)</p>
Short TE (<25ms) T₁ weighting

T₁, T₂ and PD Images

T1

MRI Overview

Physical Background Excitation and Relaxation **T**, Relaxation Spin Echo and T₂ Relaxation Coding of Spatial Information Slice Selection Read-out Gradient Phase Encoding

Spatial Localization in MRI

Position encoding by means of gradient fields:
 Z-gradient: slice selection by changing the Larmor frequency f_L = γ(B₀ + G_z.z)
 Z-gradient is applied

during the RF pulse

Slice Selection

X, Y encoding

Similar tricks to encode the x and y coordinates Only one row measured in one excitation

Examination Time

Image is measured row-by-row Basic formula: T = TR x R x N [ms] **TR** : repetition time R : number of image rows N : Number of accumulations (noise) Example: $T = 2000 \times 256 \times 2 = 17 \min$ Speed-up: **Low excitation angle** \Rightarrow shorter TR (low energy pulse) Multislice techniques

Multislice Technique

Imaging in Other Planes

- B₀ always remains in the same direction
- Choice of imaging plane depends on the order of gradients' application

Sagittal

Coronal

Transversal

Scanning Protocols

- Protocol: a sequence of pulses, gradients and signal measurements
- Protocols influence image properties and examination time

Patented and sold by scanner vendors FISP, FAST, FLASH, STAGE, STERF

Properties of MR data

- Measurement in arbitrary planes
- Typically 256x256 (512x512)pixels
- No absolute scale for measured values
- Significant level of noise
- Good soft tissue contrast
- Spatial inhomogeneities bias
- No irradiation

MR data - examples

T₁

Overview

Computer tomography (CT, CAT)
Magnetic resonance imaging (MRI)
fMRI
SPECT
PET

Functional MRI (fMRI)

- Assumption: Active brain area needs more oxygen than inactive ones
- fMRI: statistical detection of areas with oxygenated blood flow
- Visualization by merging with regular MRI data

fMRI Example

Right hand finger tapping at 2Hz

Overview

Computer tomography (CT, CAT)
Magnetic resonance imaging (MRI)
fMRI
Emission Tomography

Emission Tomography
 SPECT
 PET

Emission Tomography

ECT - Emission computed tomography

- Introduction of a radioactive agent into the patient's body (tagged substance)
- Agent's distribution based on metabolism
- Measurement of its spatial distribution

SPECT

- Single-Photon Emission Computed Tomography
- Isotopes emitting γ–photons (Tc-99, I-125, I-131)
- Uniform distribution of photons in all directions
- Scanner a set of detectors with collimators - gamma camera

Gamma Camera

Gamma Camera

SPECT data

CT-SPECT

 Combination of different techniques – supplementary information
 Registration is required

 Not a trivial task

Solution: CT-SPECT scanner

CT-SPECT (2)

CT-SPECT (3)

PET

Positron Emission Tomography

- β + decay (positrons)
- Annihilation a pair of photons with energy 511keV in opposite directions
- Detection without collimators: registration of *concurrent* events in detector pairs
- 3D measurement, statistical reconstruction (MRF)

PET Scanner

PET Scanners

and the second sec

Research prototype at BNL (1961)

Combined PET/CT, MRI

PET / CT

PET / MRI

Other Imaging Modalities

Ultrasound

_ _ _ _

- Confocal microscopy
- Electrical impedance tomography
- Optical coherence tomography

Overview

Computed tomography (CT / CAT)
Magnetic resonance imaging (MRI)
fMRI
SPECT
PET

• Synthetic Data

Voxelization of Geometric Objects

- Preparation of "synthetic" data
 A CG alternative
 Simultaneous visualization of geometric and volume data
 Modeling of volumetric properties (e.g.
- weathering)

Surface and Volume Graphics

Voxelization

- A process of approximating a continuous geometric primitive in the 3D discrete space
 The result of this process
 - Binary voxelization Voxels & occupancy $O \in \{0,1\}$ ({Background, Foreground}, {Black, White})
 - Non-binary voxelization (fuzzy, filtered) Grid points & densities $D \in R$

Binary vs. nonbinary

Non binary

Non-binary Voxelization

Suppression of aliasing in 3D model by smooth density transition in the surface area • Truncated distance field

Surface reconstruction
 Interpolation and thresholding

Analytic object

Voxelized object

Solids in Truncated Distance Fields

Voxelization by Direct Distance Computation

- Simple primitives (sphere, torus, polygon)
- Example: Voxelization of a triangle:
- Bounding box
- Voxel-by-voxel update of distances to plane, edges & vertices
- Density according to the minimal distance

Voxelized Polygonal Model

Voxelization of Parametric Surfaces

P(u,v) = [x(u,v), y(u,v), z(u,v)] $[u, v] \in (u_0, u_1) \times (v_0, v_1)$ 1. Splatting – adding small voxelized balls 2. Approx uniform sampling by binary domain subdivision

subdivis.

Surface subdivision

Voxelization of Parametric Surfaces

Voxelization of Implicit Solids

{[x,y,z]: f(x, y, z) < 0} Distance estimation by linear approximation:

$$d(x, y, z) = \frac{f(x, y, z)}{\|f'(x, y, z)\|}$$

Voxelization of Implicit Solids

 $(y^2 + s)(x^2 + z^2) - s$ $(2x^2 + y^2 + z^2)^3 - (x^2/10 + y^2)z^3$

CSG Operations

Operation	Density	Color
Intersection	$d_{A^*B} =$ Min(d_A,d_B)	$C_{A^*B} = WA(A,B)$
Union	$d_{A+B} = Max(d_A, d_B)$	$C_{A+B} = WA(A,B)$
Difference	$d_{A-B} = Max(0, d_A - d_B)$	$C_{A-B} = C_A$ if $d_{A-B} > 0$

CSG Operations

С