Acquisition of 3D Data
Tomographic Techniques

Leonid I. Dimitrov and Milos Sramek
3D Data

- **Animation, film**: a sequence of images with *time* as the third coordinate:
 \[[x, y, t] \]

- **Volume data**: a sequence of images with *space* as the third coordinate:
 \[[x, y, z] \]

- **Volume data in general**: a set of data samples measured on a grid with certain properties
Scattered Points

- Sample position
 - $[x_i, y_j, z_k]$

- Neighborhood relation:
 - None
Unstructured Grid

- Sample position
 - $[x_p, y_p, z_p]$
- Neighborhood relation:
 - Explicit $i-k$, $i-l$, ...
Structured Grid

- Sample position: based on coordinates at \([i,j,k]\)
- Neighborhood relation: Implicit, neighbors from the grid
Rectilinear Grid

- **Sample position:**
 - Coordinates \([i,j,k]\)
 - Distance between \(X,Y\) and \(Z\) planes

- **Neighborhood relation:**
 - Implicit, neighbors from the grid
Regular Grid

- Sample position:
 - Coordinates \([i,j,k]\)
 - Cell size \([X,Y,Z]\)

- Neighborhood relation:
 - Implicit, neighbors from the grid
Cartesian Grid

- Sample position:
 - Coordinates \([i,j,k]\)
 - Cell dimension \(X\)

- Neighborhood relation:
 - Implicit, neighbors from the grid
Basic elements of volume data

- Sample:
 - Dimensionless point with value

- Cell:
 - 8 (4) samples in vertices of a cube

- Voxel
 - Homogeneous cube centered at sample position
 - Analogue of the 2D pixel
Acquisition of Volumetric Data

- **3D imaging techniques**
 - **Anatomically** oriented techniques:
 - Computer tomography-CT, magnetic resonance imaging-MRI, ultrasound imaging-US
 - **Physiologically** oriented techniques:
 - Positron emission tomography-PET, single-photon emission tomography-SPECT, functional MRI

- **Synthetic data**
 - Voxelization
Computed Tomography (CT)

- Also: Computer Aided Tomography (CAT, CAT scan)

- Principle:
 - Measurement of X-ray attenuation along a viewing ray (projections)

\[S = \int \mu(l) \ dl \]

- Production of images: reconstruction from projections
A CT Tomograph
A Sample CT Scan
Measurement of Projections

- Standard setup:
 - cca 200 1D projections for one slice
Measurement of Projections

- Spatial configuration of source and detector arrays:
 - Aligned rotation
 - 180 deg
Recent Setup: Fan-Beam Spiral CT
Standard CT vs. Spiral CT

25 Slices in > 2 Minutes

25 Slices in 25 Seconds
Multi-Detector CT Scanner

State of the art:

- Detectors
 - Up to 256
 - Spacing < 1mm
- Scanning speed:
 - 1m/30s
Reconstruction from Projections

- **Theory:**
 - Johann Radon

- **First Tomograph:**
 - Godfrey Hounsfield
 - Nobel prize 1979

- **Reconstruction methods:**
 - Algebraic methods
 - Filtered backprojection
 - Fourier methods

Filtered Backprojection

- For all projections:
 - Projection filtration (high pass filter, derivative)
 - Distribution of the filtered projection to the image in the direction of the projection
CT Tomogram - an Example
Dual Energy CT

- Attenuation coefficient μ depends on the wavelength
- Scanning with two X-ray lamp voltages (energies)
- Advantage: Discrimination of tissue types
Hounsfield Unit

Normalization of measured values to a -1000 – 3095 (12 bit) scale:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Value [HU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>-1000</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
</tr>
<tr>
<td>Fat</td>
<td>70 – 120</td>
</tr>
<tr>
<td>Soft tissues</td>
<td>15 – 80</td>
</tr>
<tr>
<td>Bone</td>
<td>>1000</td>
</tr>
</tbody>
</table>

Tissue density is defined by its physical properties
CT Data Properties

- Axial slices 0.5-10 mm thick
- Images 256 x 256 to 512 x 512 pixels of 0.5-2 mm side
- Up to 2000 images per study
- High spatial resolution
- Consistent values (HU scale)
- X-ray irradiation
Application Fields

- Contrast determined by tissue density:
 - Bone imaging
 - Calcifications
 - Inflammations
 - Hematomata
 - Tumors

- Imaging with contract agent:
 - Blood vessels, vessel lumen
Overview

- Computer tomography (CT, CAT)
- Magnetic resonance imaging (MRI)
- fMRI
- SPECT
- PET
Magnetic Resonance Imaging

- **Nuclear Magnetic Resonance (NMR)**
 - **Magnetic Resonance Imaging (MRI)**

- **Physical principle**
 - Interaction of atom nuclei with an external magnetic field (resonance)
 - Requirement: Nonzero magnetic or spin moment of the atoms

- **Resonance**
 - Energy transfer between coupled systems with equal characteristic frequency
 - Example: The Tacoma Narrows bridge
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Spin</th>
<th>% abundance</th>
<th>γ MHz/T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>1/2</td>
<td>99.985</td>
<td>42.575</td>
</tr>
<tr>
<td>2H</td>
<td>1</td>
<td>0.015</td>
<td>6.53</td>
</tr>
<tr>
<td>13C</td>
<td>1/2</td>
<td>1.108</td>
<td>10.71</td>
</tr>
<tr>
<td>14N</td>
<td>1</td>
<td>99.63</td>
<td>3.078</td>
</tr>
<tr>
<td>15N</td>
<td>1/2</td>
<td>0.37</td>
<td>4.32</td>
</tr>
<tr>
<td>17O</td>
<td>5/2</td>
<td>0.037</td>
<td>5.77</td>
</tr>
<tr>
<td>19F</td>
<td>1/2</td>
<td>100</td>
<td>40.08</td>
</tr>
<tr>
<td>23Na</td>
<td>3/2</td>
<td>100</td>
<td>11.27</td>
</tr>
<tr>
<td>31P</td>
<td>1/2</td>
<td>100</td>
<td>17.25</td>
</tr>
</tbody>
</table>
Spins in a Magnetic Field

Atoms with uncompensated magnetic moment

\[\text{M} \neq 0 \]

\[\text{B}_0 = 0 \]

\[\text{B}_0 \neq 0 \]

\[\text{M} - \text{Magnetization (material)} \]

\[\text{B} - \text{Induction (field strength)} \]
Spin in a Magnetic Field (Zeeman Splitting, Spin ½)

$m_i = +\frac{1}{2}$

$P_{+1/2} = 0.5000049$

$m_i = -\frac{1}{2}$

$P_{-1/2} = 0.4999951$

1.5T, T=310K,

⇒ Total magnetization M is parallel to B_0
Spin in a Magnetic Field

- μ rotates around B_0
- B_0 – external mg. field
- μ – spin moment
 - rotates around B_0 with Larmor frequency $f_L = \gamma B_0$
- γ – gyromagnetic ratio ($\gamma = 42.58 \text{ MHz/T for } H$)
- Total magnetization: $M = \sum \mu_i$
Magnetic Field of a Tomograph

- Induced magnetic field:
 - Electromagnets
 - Superconductive electromagnets
 - Permanent magnets

- Field strength
 - 0.5T – 3T, (up to 15T for research)

- Earth’s mg. field: 0.3 - 0.7 \times 10^{-5}T
Principle of MR Imaging

Absorption and emission of energy by spins in external magnetic field (resonance)

- **Equilibrium**: $M \parallel B_{0}$: Uncoupled μ_{i} vectors:

 $$M_{z} = M, \quad M_{xy} = 0$$

- **Absorption of RF (radiofrequency) energy**: excitation ($f = f_{L}$)
 - Transition to higher energy state: $M_{z} < M$ owing to vector μ_{i} flipping
 - Coupled rotation of μ_{i}: $M_{xy} \neq 0$
 - Measurable signal due to M_{xy}

- **Relaxation**: return to equilibrium
Spin Excitation and Relaxation

Equilibrium

Excitation by RF impulse

Relaxation: Return back to equilibrium.
Relaxation

Return to equilibrium state after the RF pulse

- **Longitudinal relaxation** (spin-lattice, rate T_1):
 - Energy transfer to surrounding tissue
 - Flipping of μ_i vectors to original orientation

- **Transversal relaxation** (spin-spin, rate T_2):
 - Decoupling of μ_i due to field inhomogeneities and spin-spin interaction

- Measured signal during the relaxation
 - **FID** (Free Induction Decay)
Both T_1 and T_2 depend on the chemical environment of the nucleus (spin).

TE: time of measurement, echo time
Tissue Contrast

- Effect of TE (echo time, time of measurement)
Tissue Contrast

- Effect of echo time
Tissue Contrast

- Effect of echo time
Tissue Contrast

- Effect of echo time
MRI Measurement

- TR: repetition time
- TE: excitation time, moment of measurement
Different combinations of TR and TE yield different tissue contrast:

- **Long TR (>1500ms)**
 - Short TE (<25ms) PD (Proton Density) weighting (no T_1 and T_2 influence)
 - Long TE (>50ms) T_2 weighting

- **Short TR (<500ms)**
 - Short TE (<25ms) T_1 weighting
T_1, T_2 and PD Images
MRI Overview

- Physical Background
- Excitation and Relaxation
 - T_1 Relaxation
 - Spin Echo and T_2 Relaxation
- Coding of Spatial Information
 - Slice Selection
 - Read-out Gradient
 - Phase Encoding
Position encoding by means of gradient fields:

- **Z-gradient**: slice selection by changing the Larmor frequency
 \[f_L = \gamma (B_0 + G_z \cdot z) \]
 Z-gradient is applied during the RF pulse
Slice Selection

RF pulse

\(G_z \)

\(\Delta \omega \)

frequency

\(\omega_0 \)
X, Y encoding

- Similar tricks to encode the x and y coordinates
 - Only one row measured in one excitation
Examination Time

- Image is measured row-by-row
- Basic formula: \(T = TR \times R \times N \) [ms]
 - \(TR \): repetition time
 - \(R \): number of image rows
 - \(N \): Number of accumulations (noise)
- Example: \(T = 2000 \times 256 \times 2 = 17 \) min
- Speed-up:
 - Low excitation angle \(\Rightarrow \) shorter TR (low energy pulse)
 - Multislice techniques
Multislice Technique

- Interleaved excitation of several (64) slices:
Imaging in Other Planes

- B_0 always remains in the same direction
- Choice of imaging plane depends on the order of gradients’ application
- Oblique planes: simultaneous application of 2 gradients

![Sagittal](Image)
![Coronal](Image)
![Transversal](Image)

Sagittal Coronal Transversal
Scanning Protocols

- **Protocol**: a sequence of pulses, gradients and signal measurements
- Protocols influence image properties and examination time
- Patented and sold by scanner vendors
- FISP, FAST, FLASH, STAGE, STERF
Properties of MR data

- Measurement in arbitrary planes
- Typically 256x256 (512x512)pixels
- No absolute scale for measured values
- Significant level of noise
- Good soft tissue contrast
- Spatial inhomogeneities - bias
- No irradiation
MR data - examples

T_1, PD, MRA
Overview

- Computer tomography (CT, CAT)
- Magnetic resonance imaging (MRI)
- fMRI
- SPECT
- PET
Assumption: Active brain area needs more oxygen than inactive ones

fMRI: statistical detection of areas with oxygenated blood flow

Visualization by merging with regular MRI data
fMRI Example

Right hand finger tapping at 2Hz
Overview

- Computer tomography (CT, CAT)
- Magnetic resonance imaging (MRI)
- fMRI
- Emission Tomography
 - SPECT
 - PET
Emission Tomography

ECT - Emission computed tomography

- Introduction of a radioactive agent into the patient’s body (tagged substance)
- Agent’s distribution based on metabolism
- Measurement of its spatial distribution
SPECT

Single-Photon Emission Computed Tomography

- Isotopes emitting γ-photons (Tc-99, I-125, I-131)
- Uniform distribution of photons in all directions
- Scanner - a set of detectors with collimators - gamma camera
Gamma Camera

Diagram showing the components of a gamma camera:
- Head
- Collimator
- Photomultiplier Tubes
- NaI Crystal
- Computer
- Display
Gamma Camera

radiation area and creates an image.

Gamma camera
SPECT data
CT-SPECT

- Combination of different techniques – supplementary information
- Registration is required
 - Not a trivial task
 - Solution: CT-SPECT scanner
CT-SPECT (3)
PET

Positron Emission Tomography

- β^+ decay (positrons)
- Annihilation - a pair of photons with energy 511keV in opposite directions
- Detection without collimators: registration of concurrent events in detector pairs
- 3D measurement, statistical reconstruction (MRF)
PET Scanner
PET data
PET Scanners

Research prototype at BNL (1961)

PET today
Combined PET/CT, MRI
Other Imaging Modalities

- Ultrasound
- Confocal microscopy
- Electrical impedance tomography
- Optical coherence tomography
- ...

![Image of imaging modality](image_url)
Overview

- Computed tomography (CT / CAT)
- Magnetic resonance imaging (MRI)
- fMRI
- SPECT
- PET
- Synthetic Data
Voxelization of Geometric Objects

- Preparation of “synthetic” data
- A CG alternative
- Simultaneous visualization of geometric and volume data
- Modeling of volumetric properties (e.g. weathering)
Surface and Volume Graphics

- **Surface Graphics**: Geometric rendering of Continuous Spatial Models (CSM)
- **Volume Graphics**: Voxelization of a CSM, manipulation, and volume rendering of a Volumetric Model (VM)
Voxelization

♦ A **process** of approximating a continuous geometric primitive in the 3D discrete space
♦ The **result** of this process

Binary voxelization
Voxels & occupancy $O \in \{0,1\}$ (Background, Foreground}, {Black, White})

Non-binary voxelization (fuzzy, filtered)
Grid points & densities $D \in \mathbb{R}$
Binary vs. nonbinary

Binary

Non binary
Non-binary Voxelization

Suppression of aliasing in 3D model by smooth density transition in the surface area

- Truncated distance field

- Surface reconstruction
 - Interpolation and thresholding
Solids in Truncated Distance Fields

Object surface

Density transition area

Surface density profile

Surface density profile

1

0.5

2\(\delta\)
Voxelization by Direct Distance Computation

Simple primitives (sphere, torus, polygon)

Example: Voxelization of a triangle:

- Bounding box
- Voxel-by-voxel update of distances to plane, edges & vertices
- Density according to the minimal distance
Voxelized Polygonal Model
Voxelization of Parametric Surfaces

\[P(u,v) = [x(u,v), y(u,v), z(u,v)] \]

\[[u, v] \in (u_0, u_1) \times (v_0, v_1) \]

1. Splatting – adding small voxelized balls
2. Approx uniform sampling by binary domain subdivision

Domain subdivision

Surface subdivision
Voxelization of Parametric Surfaces
Voxelization of Implicit Solids

\[
\{[x,y,z] : f(x, y, z) < 0\}
\]

• Distance estimation by linear approximation:

\[
d(x, y, z) = \frac{f(x, y, z)}{\|f'(x, y, z)\|}
\]
Voxelization of Implicit Solids

\[(y^2 + s)(x^2 + z^2) - s \quad (2x^2 + y^2 + z^2)^3 - (x^2/10 + y^2)z^3\]
CSG Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Density</th>
<th>Color</th>
</tr>
</thead>
</table>
| **Intersection** | $d_{A \ast B} =$
 | $\min(d_A,d_B)$ | $C_{A \ast B} =$
 | $WA(A,B)$ |
| **Union** | $d_{A+B} =$ | $C_{A+B} =$ |
| | $\max(d_A,d_B)$ | $WA(A,B)$ |
| **Difference**| $d_{A-B} =$ | $C_{A-B} =$ |
| | $\max(0,d_A-d_B)$ | C_A if $d_{A-B} > 0$ |
CSG Operations

\[a * (b + c) \]