

The Word Tree, an Interactive Visual Concordance

Martin Wattenberg and Fernanda B. Viégas

Abstract— We introduce the Word Tree, a new visualization and information-retrieval technique aimed at text documents. A word
tree is a graphical version of the traditional "keyword-in-context" method, and enables rapid querying and exploration of bodies of
text. In this paper we describe the design of the technique, along with some of the technical issues that arise in its
implementation. In addition, we discuss the results of several months of public deployment of word trees on Many Eyes, which
provides a window onto the ways in which users obtain value from the visualization.

Index Terms—Text visualization, document visualization, Many Eyes, case study, concordance, information retrieval, search.

1 INTRODUCTION

In James Joyce’s A Portrait of the Artist as a Young Man, the

word “his” appears 1,744 times. The word “her” occurs 316 times.
These numbers provide little insight beyond a basic imbalance. Now
consider that the most common word to follow “his” is “soul,” while
the most common word to follow “her” is “eyes.” With this fact, the
nature of the imbalance begins to emerge. Repeated elements tell us
a great deal about texts—but with context more nuances and
revealing themes appear.

Furthermore, the set of contextual elements often itself has a
complex structure. “His soul” appears 83 times in A Portrait of the
Artist as a Young Man, but what follows those two words? Among
other phrases, “was fattening,” “was festering,” and “was foul”—
along with “was waking,” “was enriched,” and “was soaring.”

In this paper we introduce a new visualization technique, the
word tree, that makes it easy to explore this type of repetitive
context. A word tree places a tree structure onto the words that
follow a particular search term, and uses that structure to arrange
those words spatially. Simple interaction techniques allow the viewer
to examine the ways that a particular word or phrase is used in a text,
seeing broad patterns and drilling down into details.

The motivation for creating the word tree comes from our
experience with user-generated visualizations on the Many Eyes site
[11], which allows anyone to upload and visualize data. Since the
site launched in the beginning of 2007, we have observed a growing
number of attempts to visualize unstructured text. The first text
visualization on the site was a tag cloud—a common technique
showing word frequency. Despite the tag cloud’s popularity,
comments from users indicated they were sometimes as interested in
usage context as raw frequency counts. The feedback prompted us to
consider a technique that would retain more of the text composition
for exploration.

The word tree was first made public in September 2007 and, as of
March 2008, people have used the word tree to examine more than
650 texts. Because all activity on Many Eyes is public, and because
many of its members write about their experiences on blogs, we have
a rich record of word tree usage. We take advantage of this record to
assess the word tree technique and examine the types of value that it
is providing. We also describe feedback from users, which points to
several promising research directions.

2 RELATED WORK

Finding ways to display and refine search results is a classic
challenge in information retrieval. The problem predates computers;
for centuries biblical scholars have used concordances1 to see how
different words occur in religious texts. The computer-age equivalent
of these paper concordances is the “keyword in context” (KWIC)
technique [5], in which hits are shown with the search term, or
keyword, surrounded by a snippet of the text in which it occurs.
Although these snippets are often arranged so that the keywords are
aligned, it can be difficult to see patterns and connections in the
resulting array of text.

Several visualization methods have been proposed to show word
usage. Tilebars [8] provide a compressed overview of search term
distribution within a document; the SeeSoft program [4] provides
graphical highlighting of textual metadata. The TextArc technique
[13] shows the overall distribution of every word in a piece of text.
None of these, however, provides an easy way to see the different
contexts in which a given word or phrase is used. Other text
visualizations, such as dotplots [7] and arc diagrams [14], spotlight
global patterns of repetition but do not provide a detailed view of the
context of usage of particular terms.

One clever technique for displaying contextual information about
a search term is the “star diagram” of Bowdidge and Griswold [2].
Designed to help developers restructure code, a star diagram shows
how a particular variable is used in a program. The display uses a
tree structure to display which functions are applied to that variable,
which functions call those functions, and so forth up the call stack.
While it is not directly applicable to plain text, the star diagram’s
hierarchical arrangement of context makes it a precursor to the work
we describe below.

As we discuss in the next section, we propose to show context
using an interactive tree structure, in which users can click on nodes
to vary the level of detail. Three systems directly relate to the
interaction techniques we employ. The network exploration program
described in Yee et al. [15], the SpaceTree visualization [6], and
Degree-of-Interest Trees (DOITrees) [9] use elegant animations to
help users navigate, a design choice that we emulate. The SpaceTree
and DOITrees, like our visualization, allow users to easily move up
and down a hierarchy. On the other hand, our design for showing
levels of detail and handling high branching factors contrasts with
SpaceTree and DOITrees, and we discuss some differences in user
reaction to this point.

1 The word “concordance” is sometimes used to mean a comparison
between texts. In this paper, however, we use it in the literary sense
of an index that provides additional context for word usage.

• Martin Wattenberg is with IBM Research, E-Mail: mwatten@us.ibm.com.
• Fernanda B. Viégas is with IBM Research., E-Mail: viegasf@us.ibm.com.

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

1221

 1077-2626/08/$25.00 © 2008 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

3 DESIGN OF THE WORD TREE
A word tree is essentially an interactive form of the keyword-in-

context (KWIC) technique. It builds on KWIC in three ways. First, it
has a visual design that makes it easy to spot repetition in the
contextual words that follow a phrase. Second, the design makes
obvious the natural tree structure of the context. Third, it affords easy
ways to explore the context further.

A KWIC display can be thought of as a tree in disguise. Consider
Figure 1, which shows the words that follow the search term “if
love” in the play Romeo and Juliet. If one thinks of the search term
as the root node, then the various distinct subsequent words define
branches. In this case, because “if love” is always followed by “be,”
it has just one child node, corresponding to the word “be.” The “be”
node, however, has two children, one for each of the two distinct
words that follow it: “rough” and “blind.” Continuing in this way
one can define a tree structure that describes all the ways the search
term is used.

This structure is not new. The basic idea, called a suffix tree, has
for decades been an ingredient in string-processing algorithms. In
fact textbook diagrams explaining suffix trees often resemble the
word trees below. Despite their popularity among algorithm
designers, however, suffix trees have not been used as a general
visualization mechanism for search results.

3.1 Many Eyes as an experimental platform
Before describing the design of the word tree, we discuss some

relevant features of our experimental platform, Many Eyes. The site
allows anyone on the internet to try out different visualization
techniques. Previous user interviews have found a broad set of
backgrounds and goals among active participants on the site [3].
Making a new visualization method available on the site is an
effective way to see how it will be spontaneously used by a diverse
set of people.

Experimenting in public does add some constraints, however.
Unlike a supervised deployment, we cannot rely on any training for
the visualization. On the contrary, if people can’t rapidly make sense
of what they see, they will probably click away to a different site.
Our design, therefore, put a premium on simplicity and learnability.

3.2 Visual design
Figure 2 shows a simple example of a word tree, for the Romeo

and Juliet example. The basic layout of the tree is a classic branching
view. We chose this method for its instant readability. It immediately
communicates to viewers that they are looking at a tree structure.
Moreover, in contrast to more exotic methods such as hyperbolic
trees or treemaps, it largely preserves the linear arrangement of the
text.

Taking a cue from the popularity of tag clouds, we use font size
to represent the number of times a word or phrase appears. The size
is proportional to the square root of the frequency of the word. Using

the square root rather than a linear scale achieves two goals. First, it
means the area of the word is very roughly proportional to the
frequency (except for variations created by word length). Second, it
leaves sufficient blank space above and below that the overall tree
structure is visually obvious.

Branches of the tree continue at least until they define a unique
phrase used exactly once. Instead of stopping at the first unique
phrase, the tree continues until a period is reached (up to a fixed limit
of tokens), so that viewers see sensible fragments of the text. To
distinguish between the main tree of unique phrases, and the
additional context, the former is colored black and the latter is drawn
in gray.

One somewhat counterintuitive design choice is that we do not
discard stopwords or even punctuation. The rationale is that
prepositions and commas are often critical to understanding the
meaning of a text. Leaving them out might put together phrases that
mean very different things. As we discuss later, this has proved
controversial with our users.

3.3 Interactivity
To start exploring a word tree visualization, the user types a word

or phrase into a “search” box at the top of the screen. Each time the
user types the “enter” key, a punctuation mark, or a space, the tree is
rebuilt. This allows a responsive feel, and for multi-word phrases lets
the user quickly see if initial words in the phrase have too few hits to
be worth typing additional words. Note that it would also be possible
to build the tree letter by letter; however, early experiments
suggested this would be distracting.

Once a word tree is shown, a user can interact with it. Moving the
mouse over a particular word or phrase brings up additional
information, along with a message saying that clicking will explore
the tree further. Clicking on an individual word will redefine the
phrase shown by the tree. This can either narrow or widen the text
search. For instance, if the current phrase is “if love,” clicking on the
initial “if” will re-center the tree on the phrase “if” (see Fig. 3A). On
the other hand, if the user clicks on a word in a branch of the tree,
such as “blind” in the branch “if love be blind,” then the tree will be
re-centered on the longer phrase, “if love be blind” (Fig. 3B).

Often when looking at a tree, a user will see an unexpected or
interesting word in a branch, and may want to see all uses of that
word. To support this goal, a second click option is control-click,
which recenters the tree on the single word clicked, no matter where
it occurs in the tree. Control-clicking on “blind” in the example
above will display a tree that is rooted on the word “blind” (Fig. 3C).

Someone encountering the word tree for the first time may find
the result of clicking or typing unexpected. This issue is especially
acute for visualizations on Many Eyes, since people can first see
these visualizations embedded on totally unrelated websites, without
any explicit instructions. To clarify what is changing in the tree when
the user clicks or types, we built in animated transitions when
possible. For example, if the user types “if love” into the search box
and hits “enter,” they see the following:

1. The tree is built when the space after “if” is typed, fading
gently into place to avoid an abrupt “flash” of information.

2. After “enter” is typed, an animation occurs, in which the
branch for “love” becomes bigger and the other branches fade away.

Additional adjustments occur automatically. The text scale

changes to put as many words as possible on the screen, while
making sure that the largest words are readable. For repetitive texts,
the word tree can sometimes take a large amount of horizontal space,
so scrollbars are provided, Overall, the fluid feel of the interaction is
similar to that of the radial tree explorer discussed in Yee et al. [15]
and the SpaceTree system [6].

One option is to show context words trailing the given search
phrase, another option is to show words that precede that phrase.
Switching between these options is not animated, since there is not a
sensible way to interpolate between them. Another free parameter in
the visualization is the order of the branches beneath each node. The

Fig 1. All instances of “if love” in Romeo and Juliet.

Fig 2. Word tree showing all instances of “if love” in Romeo and
Juliet.

1222 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

Many Eyes word tree provides a choice among three options. The
branches can be arranged alphabetically (making it easy to scan for
particular words), by frequency (so the largest branches are first), or
by order of first occurrence in the text (the default option, since it
often produces a tree that best reflects the underlying text.) As with
clicking, when the user switches between two of these options the
word tree animates smoothly to help make clear what is changing.

As the user interacts with the tree—she may click on a branch,
recenter the tree, choose a different search term, etc.—the word tree
tracks of the sequence of actions just as a web browser does. This
allows the user to click on browser-like “back” and “forward”
buttons to review her previous steps in the visualization. This feature
helps users quickly switch between desired states for comparisons
and easily retreat from navigational dead ends.

As with all visualizations on Many Eyes, users can set particular
states and make comments. In doing so, they may wish to point to
particular items on the visualizations. To support this, users can set
the visualization to a “highlighter mode,” where clicking on words
will not cause a recentering of the tree, but instead highlight words
with translucent brown circles. Thus a user can leave a comment
like, “Note the position of God in this context,” and highlight “God”
so that other readers do not need to search for where it occurs.

Finally, the word tree does not provide any sort of “overview” of
the text nor does it present an initial search term for viewers to start
from. In this way, the visualization resembles an information
retrieval interface, driven by a search term rather than starting with
an overview. The reason for this design choice is that without a
search term, there is no obvious entry point—several alternatives
with suffix-tree-like beginnings were attempted, but seemed busy
and uninformative. A future version might try to automatically find a
good starting point: perhaps a tree centered on the most frequent
terms, a tree that shows the highest number of separate branches, or a
tree with the deepest branches. Having a default start point might
solve certain problems. For instance in the current system, unless the
creator of the word tree actively sets an initial search term, the
visualization will look blank to subsequent viewers on the site.
Another limitation of not having an overview is that users need to
know a bit about the underlying data to make sure that they look for
words that appear in the text. Many other interactive features are

possible. We discuss these in the sections on user feedback and
future work.

4 IMPLEMENTATION CONSIDERATIONS
The current implementation of the Word Tree on Many Eyes is a

Java applet, written using JDK 1.4. It is engineered to handle texts
with up to 1,000,000 tokens. (In addition to being a pleasingly round
figure, this is the approximate number of tokens in the King James
Bible, probably one of the most-visualized text on Many Eyes.) In
this section we discuss some of the implementation details and
decisions that allow the applet to scale—both visually and in
performance—to a million tokens.

The data structure behind the word tree—that is, the hierarchical
structure of the context words—is well-known to computer scientists
as a “suffix tree.” In our context the practical bound on performance
is memory rather than CPU cycles: constructing the tree is fast (at
least for a million-token text) as long as there is sufficient memory.
Java applets often have limited heap space, as low as 64MB.
Although this may seem more than adequate for holding a million-
node tree, it is actually a serious constraint due to the memory-
intensive nature of Java objects. To get around the problem, we do
not create a suffix tree for the entire text, but rather create the suffix
tree on the fly, a new one for each phrase typed in. In practice this
saves a significant amount of memory; for instance, in the King
James Bible (about 1,000,000 tokens), the word tree for “the” has
only about 64,000 leaves. This complicates effects such as animated
transitions, but permits the feeling of instant feedback we desire.

In addition to the data-level scaling, two issues arise in scaling
the tree visually. The first is that the total number of branches is huge
compared to the screen size. When there are tens of thousands of
leaves to a tree, there is no sensible way of displaying all of these on
a screen that is a few hundred pixels high. We resolve this issue by a
standard “level of detail” method. As the geometry of the tree is
defined, when it is determined that a subtree takes up less than 3
pixels of vertical space, we do not draw the entire subtree. Instead,
we find the deepest branch, and draw that. By doing so, we show the
overall shape of the tree, but do not draw more than necessary. This
simplifies the display and also keeps the number of rendered objects
low enough that smooth animated transitions are possible.

Fig 3. Sequence showing some of the interaction options in the word tree. In figure A, the user has typed the word “if” in Romeo and Juliet. In B,
the user has clicked on “blind,” which appears in one of the branches under “if.” This causes the visualization to recenter to the longer phrase “if
love be blind.” In C, the user Control-clicks on “blind,” which causes the visualization to recenter to blind by itself, revealing that there are
additional phrases after this term.

1223WATTENBERG AND VIÉGAS: THE WORD TREE, AN INTERACTIVE VISUAL CONCORDANCE

One might contrast this with the method used by Bederson et al
[6] in the SpaceTree. In that visualization, once items become too
small to see, subtrees are replaced by icons or simplified views that
indicate the overall breadth and depth. Note that our method does not
need to communicate a general sense of breadth, since we only apply
level of detail calculations when the breadth of a subtree is negligible
compared to the breadth of the overall tree.

Fig 4. Two versions of the word tree: on the left, all branches under
“the” are displayed, causing most words to become unreadable.
On the right, we use a “level of detail” method, showing a subset
of branches.

A second design issue arises for common words in a large text:

for instance, in the word tree for “the” in the King James Bible,
which occurs 64,028 times. 3,604 distinct words follow “the” in this
text, with the most common being “Lord” at 11% of the total. That is
enough to be visible, but the second most common word, “son,”
takes up only 2.3%, barely enough to be legible. As a result, if all
words were shown—or even if only a few were shown with sizes
proportional to their frequency—then almost none would be
readable.

To handle this problem, we compromise and show only the
largest branches, with the number defined so that only branches with
at least 1% of the total leaves are included. In the case of the King
James Bible and “the,” this means that words like “son,” “children,”
and “king” are legible. This method of pruning is continued
recursively for sub-branches. Note that the result is a genuine
compromise, since a user can’t immediately deduce the true
proportional usage of a word in context, since we have removed the
“long tail” of infrequently seen words. It is worth emphasizing the
difference from the kind of data used in SpaceTree, where the
prototypical use case was an organizational chart with branching
factors in the dozens, not thousands. An approach similar to our is
taken by the DOITree described in [9], which does collapse nodes of
lesser significance to make room for others; on the other hand—but
as with the SpaceTree, the DOITree strives for readability of
individual items overs a sense of overall breadth,

5 SPONTANEOUS USAGE ON MANY EYES
As of this writing, users have created 658 word trees on Many

Eyes. This section describes some of these word trees and the types
of data they have been used for2. Because of the ease of access to
Many Eyes, some of these word trees represent undirected “tire-
kicking” and aimless experimentation. In other cases, however, users
had specific goals in mind and described their actions in detail. We
found these more detailed cases through two avenues: on and off
site. User comments and actions on the site led us to several
examples. We also performed searches on Google, which reported

2 In this section we reprint some visualizations created by registered
users of Many Eyes. As part of registration, all users gave permission
for us to create such copies.

more than 300 references “word tree” with either “manyeyes” or
“many eyes” outside of the ibm.com domain.

The search led us to some of the most detailed reports. In one,
entitled “Using Word Tree Visualization for Checking Title
Consistency” [1], a blogger wrote a 1,007-word essay describing his
use of the visualization. His initial task was creating a series of title-
like summaries for stories in the Bible. He decided to use the word
tree to visualize his collection, and even went to the trouble of
adding special “+Start+” and “+end+” tokens to his titles so that they
would not run together in the tree. After doing this, he reported:

Looking at the frequency-sorted suffixes for “+start+ Jesus warns”,
i see a large group under “against”, and a number under “about”,
but also a single instance, “Jesus warns of coming judgment”.
Because the third word is “of” rather than “about”, it stands apart
from the other instances which really share the same concept.

He went on to describe how he could rewrite the title to become
more consistent. Along with describing the value he derived from the
visualization, he also provided a very detailed description of the
word tree and how he interacted with it.

… clicking on “teaches” narrows the view further (which you pretty
much have to do to see the details: results over 30 or 40 aren’t really
visible). One advantage of this representation is that it gives you
some help in knowing what to explore (in user interface terminology,
an affordance). Though i can’t see all the details without zooming in,
i can see a significant cluster of titles starting with “Jesus warns”,
and if that’s interesting, i can click on “warns” to zoom in and see
those 18 titles.

This description of the effect of the too-small-to-read type is very
interesting, because it stands in contrast to a result reported for the
SpaceTree. In [6], Grosjean et al. emphasize that their users “rejected
bluntly” unreadable type, and the authors of the paper created a new
type of icon as an alternative to scaled-down text. It is unclear
whether this blogger would have preferred the SpaceTree icons; it is
also possible that there is great variability among individual users’
preferences, or that the different branching factors in the SpaceTree
data versus our suffix trees are amenable to different designs.

Finally, this blogger also made a suggestion for a future feature,
namely drilling down for more details:

What would be really great would be to turn this from a visualization
into a navigation system, so once i’ve drilled down to “Jesus warns
against …”, then i could select a title and actually view the pericope
text.

While this essay-length blog entry was unusual, the creativity and
energy behind it were echoed in the actions of many other users. We
now describe some of the general trends in how they used the word
tree.

5.1 Visualizing the spoken word
In April of 2007, former U.S. Attorney General Alberto Gonzales

testified before the Senate Judiciary Committee on his role in the
dismissal of several U.S. attorneys. As the transcript of Mr.
Gonzales’s testimony became available on the web, one of the
authors in this paper visualized the text as a word tree on Many Eyes.
The visualization clearly showed a number of times when Mr.
Gonzales had used expressions such as “I don’t recall,” “I don’t
know,” “I don’t think” while testifying (Fig. 5).

In September, the Gonzales visualization was featured on the
front page of Many Eyes—a prominent spot on the site. Within 90
minutes of it being featured, another user had created a new word
tree, entitled “William ‘I don't recall’ Jefferson Clinton Testimony in
Sexual Harrassment Lawsuit that led to his impeachment” [sic]. Here

1224 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

too, the user set up the visualization so that the default view would
show the number of times Mr. Clinton had said “I don’t know,” “I
don’t remember,” “I don’t think,” etc (Fig 6). In short, both
visualizations gave a clear portrait of evasive testimony.

Given that these scandals focused on politicians at opposite ends
of the political spectrum, the visualizations take on an evident spin,
with even the act of their creation suggesting political affiliations and
beliefs. This sort of contribution to “counter” someone else’s
creation on Many Eyes indicates that users are integrating these tools
in their communicative practices. Far from being dispassionate
representations of data, the two “I don’t recall” word trees are part of
a political conversation, a dialog happening through visualization.

The ability to visualize political transcripts has resonated with our
user base. Since the word tree was launched during the preparation
for the 2008 U.S. presidential election, users frequently created word
trees of political speeches, debates among candidates, and media
coverage of the election.

Emotionally charged transcripts such as congressional hearings
and political speeches are not the only kind of transcripts being
visualized on Many Eyes. Even communities that are traditionally
immersed in numerical data, such as financial analysts and investors,
have started to explore the possibilities of using word trees to
visualize transcripts. Earlier this year Seeking Alpha, a well-known
online column of stock market opinion and analysis, embedded both
a word tree and a tag cloud of the transcript of an earnings
conference call on its site and invited readers comment on their
value.

The post quickly generated a number of comments, not all of
them in approval of the experiment. Some felt that the word tree was
more helpful than the tag cloud because it kept the structure of the
text, while others mentioned that it was easier not to use
visualization at all:

Just give us the text, we know how to find (Ctrl+f)

As with the Blogos author, a common request was for the ability

to click on an item in the visualization and see the places in the raw
transcript where that item appears.

5.2 Visualizing the written word
The word tree was designed to handle texts of up to a million

tokens, and to demonstrate this we created a visualization of the
King James Bible, which contains 1,007,116 words and punctuation
marks. Once the visualization was posted on the site, it was quickly
picked up by a group of users interested in religious texts. The
reaction was positive; this comment, unusual for visualizations in
general, typified the response:

This is a new tool to teach the Bible's truth. God bless you.

Other users promptly explored various entryways into the text,

looking for expressions such as “days of thy,” “my love,” and “love
the lord” (Figure 9). As previously noted [13], visualizations of
religious data have been a regular occurrence in Many Eyes since the
site was launched. Perhaps it is not surprising that this community
would be excited to experiment with the analytical possibilities of
the word tree.

Users have also created numerous word trees of literary works,
musical lyrics, and academic papers. An interesting trend is the
visualization of online social activity. Some users have started
visualizing collections of Twitter posts, blog posts, and newsgroup
discussions. It seems that, like tag clouds, word trees might be
helpful in giving people a quick sense of distributed activity online.

5.3 Visualizing structure
Although the word tree was designed to analyze unstructured

text, it is based on a visualization of abstract tree structures. Users
quickly caught on to the possibility of visualizing structured data and
started specially formatting data in ways that would induce the word
tree to show tree-structured information.

One person uploaded a data set of Greek nominal suffixes used in
the New Testament with full nominal morphology. Because this data
set is not a regular text passage but rather a list of words spaced out
into individual letters, the word tree looks cryptic (see Fig. 7). If, for
example, a user does a search for, NPM (nominative, plural,
masculine words), they will see the suffix tree is dominated by –OI
and –ONTES. This arrangement shows that the large majority of
nominative, plural, masculine words in Greek end in -OI or -ONTES.

Another user created a data set to show the different pathways to
the U.S. Presidency. The data set lists the names of 19 American
presidents and the sequence of titles held by each one of them (Fig.

Fig 5: Alberto Gonzales’ testimony in 2007.

Fig 6: Bill Clinton’s testimony in 1998.

Fig 7. Data set and word tree of Greek nominal suffixes in the
Bible. Here, “npm” refers to nominative, plural, masculine nouns.

1225WATTENBERG AND VIÉGAS: THE WORD TREE, AN INTERACTIVE VISUAL CONCORDANCE

8). The word tree reveals that, whereas there were ten presidents who
had served as governors, only five had previously been senators—
Harding was the first and Kennedy the last. One might wonder what
this historical fact spells for the 2008 elections.

Among other things, these examples show that at least some users
can understand how the data structure maps to the visualization
technique well enough to reverse-engineer the visualization to serve
new purposes.

5.4 User feedback
Working on a public web site for visualization gives us the ability

to collect user feedback on the new techniques we launch. The word
tree has generated many comments about what users found helpful,
problematic, and even missing. The response has generally been
positive with a number of suggestions for improvements.

Users were excited about the ability to visualize large pieces of
text while keeping some of the context around keywords. Several
people remarked on how much they liked the capability of
“zooming” in and out of specific branches of the tree. When
comparing the word tree to the tag cloud, users felt that the word tree
allowed them to engage in deeper analysis of the text.

On the other hand, not all feedback was positive and users
suggested many new features. Several of these are relatively minor
changes. The most commonly requested feature was for an option to
ignore punctuation, and sometimes stopwords as well. Because
sometimes these tokens take a lot of room in the visualization, users
would prefer to have the option of turning stop-words and
punctuation on and off. In addition, some users also wanted more
context, in particular the ability to place their search terms “in the
middle” of the word tree, surrounded by both the preceding and
following context a given phrase.

The second main group of suggestions centered on the ability to
drill down from the word tree into a plain view of the text. A related
request is to see the locations of all the uses of a particular word or
phrase, perhaps by drawing lines from the nodes of the word tree into
a vertical line representing the extent of the text. Finally, several
users requested the ability to filter the text, showing word trees of
just particular sections.

CONCLUSION AND FUTURE WORK

The Word Tree is sufficiently flexible and engaging that hundreds of
people have used it to examine data on the Many Eyes site. The
technique presented here is extremely simple, however, and there are
many natural extensions. We note some promising future directions
in this section, and then conclude with a brief discussion of what the
popularity of the Word Tree may tell us about visualization of text
on the web.

As described above, users have provided a long list of desired
features. Many of these, such as drilldown from the tree into the
original text, are straightforward to implement, but a few point to
larger research directions. One kind of implicit request from our
users regards comparisons. Many users like to look at different texts,
or different phrases in the same text. For example, people will create
word trees of different sections of the Bible, or might look at the
context for contrasting words like “his” or “her” and what follows
them. To support this type of comparison, it would be nice to overlay
two trees on top of one another, perhaps with some sort of color
coding.

A second idea, suggested by several users including [10] is to
show a “net” of the words that connect two phrases. In other words, a
user could type in “Romeo” and “Juliet” when studying Shakespeare,
and see all chains of words (of less than a given length) that connect
the two. These chains would not form a tree, of course, but a sort of
network anchored at the two ends. Exactly how best to display and
interact with such a net is an interesting problem.

Another natural direction is to handle much larger data sets.
Doing so would probably require an offline calculation of a suffix
tree, which would be stored on a server. Algorithms for doing such
computations exist—they are handy in biology, for example—but
may have to be modified to handle level-of-detail issues.

One problem identified users is that there is no natural entry point
into the visualization: the viewer starts by seeing a blank screen. It
might be worthwhile combining a word tree with other text
visualizations, whether a tag cloud or a more complex system such
as Jigsaw [12] that could provide an initial analysis of entities of
interest.

Finally, the hundreds of word trees created on the Many Eyes site
point to a broader implication: people are hungry for new ways to
look at unstructured data. Predicting the exact use cases for these
visualizations is difficult. Before seeing the first bible visualizations

Fig 8. Data set and word tree of pathways to the U.S. presidency.

1226 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

on Many Eyes, for instance, we would not have guessed at the
popularity of religious analyses. Given the broad demand for text
visualizations, however, it seems like a fruitful area of study.

ACKNOWLEDGEMENTS
The authors thank Frank van Ham, Jesse Kriss, Matt McKeon, Lee
Byron, and Eric Gilbert for helpful suggestions. In addition, we are
grateful to the users of Many Eyes for their creativity and willingness
to provide feedback on an experimental visualization technique.

Fig 10: Word Tree showing all occurrences of “I have a dream” in Martin Luther King’s historical speech.

Fig 9. Word tree of the King James Bible showing all occurrences of “love the.”

1227WATTENBERG AND VIÉGAS: THE WORD TREE, AN INTERACTIVE VISUAL CONCORDANCE

REFERENCES
[1] Boisen, Sean, “Visualizing Bible Data at Many Eyes.” Blog entry.

http://semanticbible.com/blogos/2007/01/25/visualizing-bible-data-at-
many-eyes/

[2] Bowdidge, R. and Griswold, W. (1998) Supporting the restructuring of
data abstractions through manipulation of a program visualization. ACM
Transactions on Software Engineering and Methodology. 7(2) 109-157.

[3] Your Place or Mine? Visualization as a Community Component.
Catalina M. Danis, Fernanda B. Viégas, Martin Wattenberg, Jesse
Kriss.CHI, 2008.

[4] Eick, S., Steffen, J., and Sumner, E. (1992) Seesoft-A Tool for
Visualizing Line Oriented Software Statistics. IEEE Transactions on
Software Engineering, 18(11), pp. 957-968.

[5] Fischer, M. (1966). The KWIC index concept: A retrospective view.
American Documentation. 17 (2) pp. 57 -70

[6] Grosjean, J., Plaisant, C., Bederson, B. (2002). SpaceTree: Supporting
Exploration in Large Node Link Trees, Design Evolution and Empirical
Evaluation. IEEE Symposium on Information Visualization.

[7] Helfman, J. (1996) Dotplot patterns: a literal look at pattern languages.
Theory and Practice of Object Systems, 2(1) pp. 31 – 41.

[8] Hearst, M. (1995) TileBars: Visualization of Term Distribution
Information in Full Text Information Access, ACM Conference on
Human Factors in Computing Systems.

[9] Heer, J. and Card, S. (2004) DOITrees Revisited: Scalable, Space-
Constrained Visualization of Hierarchical Data. Proc. Advanced Visual
Interfaces

[10] Hurst, M. “Word Trees.” Blog entry.
http://datamining.typepad.com/data_mining/2007/09/word-trees.html

[11] Paley, B. (2002) TextArc. http://www.textarc.org
[12] Stasko, J., Gorg C., and Liu, Z. "Jigsaw: Supporting Investigative

Analysis through Interactive Visualization", Information Visualization,
Vol. 7, No. 2, Summer 2008, pp. 118-132

[13] Viégas, F.B., Wattenberg, M., van Ham, F., Kriss, J., & McKeon, M.
(2007) Many Eyes: A Site for Visualization at Internet Scale. IEEE
Symposium on Information Visualization.

[14] Wattenberg, M. (2002) Arc Diagrams: Visualizing Structure in Strings.
IEEE Symposium on Information Visualization.

[15] Yee, K, Fisher, D., Dhamia, R., and Hearst, M. (2001) Animated
Exploration of Graphs with Radial Layout. IEEE Symposium on
Information Visualization

1228 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

