
Beamtrees : Compact Visualization of Large Hierarchies

Frank van Ham, Jarke J. van Wijk
Technische Universiteit Eindhoven

Dept. of Mathematics and Computer Science
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

{fvham, vanwijk}@win.tue.nl

Abstract

Beamtrees are a new method for the visualization of

large hierarchical data sets. Nodes are shown as
stacked circular beams, such that both the hierarchical
structure as well as the size of nodes are depicted. The
dimensions of beams are calculated using a variation of
the treemap algorithm. A small user study indicated that
beamtrees are significantly more effective than nested
treemaps and cushion treemaps for the extraction of
global hierarchical information.

1. Introduction

The visualization of large hierarchical datasets is an
important topic in the visualization community. The
main problem is the limited amount of display space.
Traditional node link diagrams lead to cluttered displays
when used to visualize more than a few hundred nodes.
They are therefore unsuitable to visualize, for instance,
an average directory structure, containing tens of
thousands of nodes. Possible solutions to this problem
are threefold: We can increase available display space,
by either using three dimensional and/or hyperbolic
spaces; we can reduce the number of information
elements by clustering or hiding nodes; or we can use
the given visualization space more efficiently by using
every available pixel. Of the latter category of solutions
treemaps are the prime example.

Treemaps are compact displays, which are
particularly effective to visualize the size of the leaves
in a tree. However, one important drawback of treemaps
is that the hierarchical structure is harder to discern than
in conventional tree browsers: All space is used for the
display of leaf nodes, and the structure is encoded
implicitly. A number of attempts have been made to
overcome this problem, the most notable being the use
of nesting and shading.

 Inspired by treemaps, we present a new algorithm
that visualizes the structure more explicitly. The user is
enabled to adjust the visualization to his or her
preferences: Either all space can be used for the
leafnodes, which results in a conventional treemap, or

more space can be used for the display of the
hierarchical structure, which results in a beamtree. More
specifically: where nested treemaps use nesting to
indicate a parent-child relationship, we use overlap (Fig
1). The hierarchical structure is visualized as a stack of
rectangles and shading and 3D are used to strengthen the
perceived depth in the structure.

b a

Figure 1. Displaying hierarchical data by
 (a) Nesting (b) Overlap

Section 2 discusses the basic treemap algorithm as
well as a number of variations. The beamtree algorithm
is presented in section 3 and section 4 discusses the
results of a user test comparing treemaps to beamtrees.
Finally, section 5 summarizes the results and discusses
future work.

2. Related Work

Treemaps, invented by Johnson and Shneidermann in
1991 [6], are rectangular displays of trees that use the
available visualization space very efficiently. The basic
treemap algorithm is straightforward: An arbitrary
rectangle representing the root node of the tree is
horizontally subdivided into smaller rectangles, where
each smaller rectangle represents a child of the root
node, with the area of the rectangle being proportional to
the size attribute of the node. This process is then
repeated recursively, with the direction of the
subdivision alternating between horizontal and vertical.
Treemaps are especially useful for the display of large
hierarchical datasets in which the size attribute of a node
is important. As the size of each rectangle is

proportional to the size of the node, one can easily spot
the largest nodes in the tree.

 However, standard treemap representations have two
problems. Firstly, the method often leads to high aspect
ratios (i.e. long thin rectangles). These make it more
difficult to compare sizes and lead to interaction
problems. Secondly, since the leaf nodes take up all of
the visualization space, no space remains for the internal
nodes of the tree. This makes it difficult to reconstruct
the hierarchical information from the treemap,
especially when dealing with large, deep trees. Recent
research has tried to provide answers for both of these
problems. New subdivision schemes have been
developed by [2,7,9] amongst others, producing better
aspect ratios but worsening layout stability. Methods to
improve the display of hierarchical information include
nesting [6,9], line width, color and, more recently,
shading [10]. However, these methods still require a
significant cognitive effort to extract the actual tree
structure from the picture, especially when compared to
the traditional node-link visualization. The use of
nesting also influences the area of nodes deeper in the
hierarchy since more space has to be reserved for the
borders. We present a new approach that uses spatial
ordering to display hierarchical ordering, while
maintaining the proportionality property of treemaps.

3. Beamtrees

Since treemaps already use two dimensions to display
size, we use a third dimension, i.e. display depth, to
indicate depth in the tree. However, all of the available

display space is already used up by the leaves, so we
have to reduce the size of the leaves. As a first step we
adapt the standard treemap algorithm: Instead of
displaying the leaves space-filling we render all
rectangles representing nodes with a scaled width. In
other words, we reduce their dimension perpendicular to
the direction of subdivision. Figure 2 shows that, as the
scaling factor decreases, the partial occlusion creates a
stronger depth effect.

A disadvantage is that leaf nodes tend to become very
thin, even stronger than with standard treemaps. To
reduce this problem and to decrease the number of
separate elements in the display, we therefore treat leaf
nodes differently. Instead of scaling their width, we use
a treemap style subdivision algorithm: We assign to
each leaf node a section of its parent node that is
proportional to its size (Fig 2e). To provide for a more
pleasant display we sort the children of a node, such that
all leaf nodes are aggregated at the top or left side of
their parent rectangle (Fig 2f). Since all rectangles are
scaled with the same scale factor their size is still
proportional to the size of the node they represent.

This display still suffers from problems however.
Firstly, many non-leaf nodes have touching edges,
making it more difficult to perceive them as separate
visual entities. This can be resolved by also applying a
scale factor to their length, using constraints to ensure
the structure doesn’t break up in separate pieces. We
elaborate on this in section 3.1. Secondly, the large
number of overlapping rectangles makes the resulting
display abstract and hard to interpret. This can be
significantly improved by the use of shading (section
3.2)

c: 50% a: 100% b: 75%

f: Sort children d: 25% e: Scale leaves treemap-style

Figure 2. Scaling a treemap to a beamtree.

3.1 Constrained scaling

Since we did not scale the length of non-leaf
rectangles, many of them still have touching edges (Fig
3a). As this makes it more difficult to perceive them as
different visual entities we therefore also scale the
length of each rectangle. We obviously run into
problems when applying unconstrained scaling to
internal nodes, since the structure might fall apart into
separate pieces when doing so. Another problem is that
due to scaling, leaf nodes may overlap, which is also not
desirable (Fig 3b). We therefore need constraints that
limit the scaling of internal nodes. Leaf nodes do not
pose a problem in this case, since their size only
depends on the scaled size of their parent node.

We calculate constraints bottom up in the tree, starting
at the deepest internal nodes. We discern three cases for
an internal node N:
1. N has only leaf nodes as children: In this case we

don’t need to compute constraints, since leaf nodes
get scaled with their parent by definition (Fig 3c);

2. N has only non-leaf nodes as children: To avoid
the structure from breaking up into separate pieces
we use the front edge of the rectangle representing
the first child of N as a lower bound and the back
edge of the rectangle representing the last child of
N as an upper bound (Fig 3d);

3. N has both leaf and non-leaf nodes as children:
We can use the back edge of the last child node of
N (i.e. x3) in the same manner as we did in the
previous case. Since N also has leaf nodes as
children we have to take space for them into

account to avoid overlapping structures. Bound x2 is
equal to the front edge of the bounding box
encasing the first non-leaf child of N. Since we also
know the total size of all leafnodes S(L) and the
total size of all child nodes S(N), we can derive x1
by solving (Fig 3e):

a

x2 – x1 S(L)
=

Because the length of each rectangle might get scaled
differently due to the above constraints, the area of a
rectangle may no longer be proportional to the size of
the node it represents. We solve this problem by scaling
down the width for these rectangles appropriately, so the
resulting area remains proportional to the node size.

3.2 Algorithm

To show that the above-mentioned cases can easily
be integrated in the conventional treemap algorithm, we
present the entire beamtree algorithm here in detail. We
use the following data types:

Dir = (X,Y);
Bound = (Min, Max);
Rectangle = array[Dir, Bound] of real;
Node = class

 sizeN : real;
 sizeL: real;

 child : array[1..nchild] of Node;
 nleaf: 1..nchild;
 rt : Rectangle;
 rs : Rectangle;
 function rbound: Rectangle;

 end;

x3 – x1 S(N)

b

c N

d N

e N

x1 x2 x3

Figure 3. Scaling lengths

Node attributes sizeN and sizeL store S(N) and S(L)
respectively. Array child contains nchild childnodes,
sorted such that the first nleaf nodes in this array are
leafnodes. The dimensions of the rectangle representing
the node in a regular treemap are stored in rt, while rs
stores the scaled version of the same rectangle. Finally,
function rbound returns the bounding rectangle for a
scaled treemap rectangle and its children.

To facilitate notation we use three auxiliary
functions: Function Alt alternates the direction of
subdivision (i.e. Alt(X) = Y and Alt(Y) = X). Functions
SetSize and GetSize respectively assign and return the
length or width of a rectangle:

procedure SetSize(var r: Rectangle; d: Dir; s: real);
var c: real;
begin
 c := (r[d, Min] + r[d, Max])/2;
 r[d, Min] := c – s/2;
 r[d, Max] := c + s/2
end;

function GetSize(r: Rectangle; d: Dir): real;
begin
 GetSize := r[d, Max] – r[d, Min]
end;

The main algorithm is similar to the original treemap
algorithm from [6], using two extra procedures to scale
down the rectangles. Note that non-leaf nodes have to be
scaled before leaf nodes, because for scaling the latter
we need information on the (possibly constrained)
scaled length of their parentnode.

procedure Node.BeamTreeLayout(r: Rectangle; d: Dir);
var i : integer; f: real;
begin
 rt := r;
 if sizeN > 0 then f := GetSize(rt, d) / sizeN else f :=0;
 for i := 1 to nchild do
 begin
 r[d, Max]:= r[d, Min] + f * child[i].sizeN;
 child[i].BeamTreeLayout(r, Alt(d));
 r[d, Min]:= r[d, Max]
 end;
 if nchild > 0 then ResizeNode(d);
 if nleaf > 0 then ResizeLeavesOfNode(d);
end;

Scaling of internal nodes is done in method ResizeNode.
Global parameters LengthScale and WidthScale contain the
scale factors for the length and width respectively. In
practice, values of 0.95 for LengthScale and 0.35 for
WidthScale give good results. The scale factor is applied
to the original treemap rectangle rt in the second line. If
we are dealing with a case 2 or case 3 internal node (see
paragraph 3.1), we have to apply constraints to the
scaled rectangle. Finally, the difference between the
unconstrained and constrained scaled lengths is taken

into account when scaling the width, to maintain size
proportionality.

procedure Node.ResizeNode(d: Dir);
var L,W, x1, x2, x3: real;
begin
 rs := rt;

L := LengthScale* GetSize(rt, d);
SetSize(rs, d, L);

if nleaf = 0 then /* Case 2 */
begin
 rs[d, Min]:= min(rs[d, Min], child[1].rs[d, Min]);
 rs[d, Max]:= max(rs[d, Max], child[nchild].rs[d, Max])
end else
if nleaf < nchild then /* Case 3 */
begin
 x2 := child[nleaf + 1].rbound[d, Min];
 x3 := max(rs[d, Max], child[nchild].rs[d, Max]);
 x1 := x3 – (x3–x2)/(1– sizeL / sizeN);
 rs[d, Min]:= Min(rs[d, Min], x1);
 rs[d, Max]:= x3
end;

W := WidthScale*GetSize(rt, Alt(d))*L/GetSize(rs, d);
SetSize(rs, Alt(d), W);

end;

In a last step we resize the leaves of a node in a treemap
style fashion, using the scaled size of their parent as the
initial rectangle.

procedure Node.ResizeLeafsOfNode(d: Dir);
var i : integer; f : real; r : Rectangle;
begin
 r := rs;
 if sizeN > 0 then f := GetSize(r, d) / sizeN else f := 0;

for i := 1 to nleaf do
begin
 r[d, Max] := r[d, Min] + f * child[i].sizeN;
 child[i].rs := r;
 r[d, Min] := r[d, Max]
end

end;

3.3 Beamtree Visualisation

Though occlusion is a strong depth cue, it also
presents some new problems, the most notable being the
fact that overlapping rectangles tend to break up into
visually separate pieces. A solution to this problem is
the use of shading [5] to indicate the direction of
subdivision. As such, nodes are no longer visualized as
two-dimensional rectangles but tend to resemble three-
dimensional round beams, further strengthening the
perceived depth in the picture. Additional depth cues
can be provided by atmospheric attenuation and cast
shadows (Fig. 4). Figure 5a shows a file system
rendered in 2D using the above-mentioned cues.

 shadows and attenuation shading overlap

Figure 4. Adding visual cues

Another strong depth cue is motion parallax. We
implemented a prototype using OpenGL, in which the
user can rotate the beamtree structure and return to the
top-down view at the press of a button. An extra
advantage of a three dimensional view is that the user
can move his or her viewpoint to a point parallel to a
beam direction and view the entire structure in a more
conventional way with one display axis indicating node
depth (Fig 5c). As height for each beam we choose the
minimum of width and length, as this provides the most
aesthetically pleasing picture. Disadvantage is that, with
height varying over each beam, beams at the same level
in the tree do not necessarily get laid out at the same
depth. We therefore provide an option to layer the stack
of beams, that is, display each beam at a depth
proportional to its depth in the tree (Fig. 5d).
Connections between beams are indicated by lines when
beams are displayed in layered mode. To make it easier
for the user to maintain context, transitions to and from
layered mode are animated.

Instead of explicitly modeling every leaf node in 3D,
we used procedurally generated one-dimensional texture
maps to represent leaves. Depending on the number of
leafnodes of the node under consideration, resolution of
the texture can be increased. Using this approach we
were able to render more than 25,000 nodes in real-time
on a PC with a GeForce2 graphics card (Fig 5b).

4. User test

A small pilot study was conducted to test if a
combination between explicit hierarchical information
and treemap-style size information is an improvement
over existing methods. Although a recent study [1]
suggests treemaps are not the most ideal visualization
tool for small hierarchies, we feel there are not many
alternatives for larger (say over 200 nodes) hierarchical
structures. We therefore conducted a similar user test,
comparing both the 2D and 3D beamtrees to cushion
treemaps, as implemented in SequoiaView [8], and
nested treemaps, as implemented in HCIL’s Treemap
3.2 [4]. Twelve coworkers participated in the
experiment, none of which were familiar with the

concept of beamtrees, although seven were familiar with
general treemap concepts.

4.1 Setup

The experiment was set up as a 4 x 5 factorial design,
with 5 tasks for each of the 4 visualization methods (2D
Beamtrees, 3D Beamtrees, Nested Treemaps and
Cushion Treemaps). The tasks focused on:
- File size: Users had to select the three largest leaf

nodes. Any node could be selected, and a response
was judged correct only if all three largest leaves
were selected.

- Tree topology: Users had to indicate level of a
predetermined node. To avoid potential confusion
the level of the root node was defined as 1.

- Tree topology: Users had to indicate the total
number of levels in the tree.

- Tree topology: Users indicated the deepest
common ancestor of two predetermined nodes.

- Node memory: In order to test how fast user could
achieve a mental map of the tree structure, they
were asked to memorize the positions of two
predetermined nodes. If the user believed he or she
could remember the location, the view was closed
and reshown at a different size, to prevent users
from remembering the screen location instead of
node location. Users then had to indicate the
positions of both nodes.

4.2 Procedure

We created 4 smaller randomized trees consisting of
approximately 200 nodes and 4 randomized larger ones
of approximately 1000 nodes. Node sizes were
distributed using a log-normal distribution.

For each visualization method participants had to
perform all 5 tasks for both a smaller and a larger tree,
for a total of 40 tasks per participant. Trees and methods
were matched up randomly and the order of
visualization methods was also randomized. The order
of tasks to be performed for each tree remained the same
throughout the experiment.

 Figure 5. a) Filesystem rendered in 2D, b) Same filesystem in 3D,

c) Layered orthogonal view, d) Layered isometric view

a b

c d

All visualizations used straightforward slice-and-dice
partitioning and were displayed at a resolution of
1280x1024 pixels. Nested treemaps used a 3-pixel
border. Beamtrees used scale factors of 0.35 for width
and 0.95 for length. Node labels were not displayed, so
users had to rely entirely on the visualization instead of
textually encoded information. Detail size information
about each node was still available by means of a tooltip
window that popped up when a user moved the mouse
over a node.

If users indicated they were not familiar with
treemaps they were given a short explanation on the
general principle of treemaps, followed by a small test to
see if they had understood the concept. The tests for
each visualization method were preceded by an
explanation on how to interpret the visualization method
and what tasks had to be performed. Subsequently, one
timed trial run was performed to make the participant

more comfortable with the task. During this explanation
and trial run the participant was free to ask questions. If
the participant was convinced he or she understood the
visualization method and the tasks to be performed,
actual testing began. Participants were not allowed to
ask questions and no feedback on response time and
accuracy was provided during the timed run.

 Timing was self-paced and started immediately after
the user was asked a question. Timing ended when the
user verbally indicated he or she had found the answer,
or, in the case of the memory task, thought he or she
could remember the location of the nodes. At the end of
all tests users rated the methods based on their
subjective preference.

Memory

Nest ed Cushion 2DBT 3DBT

Common

Nested Cushion 2DBT 3DBT

Levels

Nested Cushion 2DBT 3DBT

Depth

Nested Cushion 2DBT 3DBT

Size

0

10

20

30

40

50

60

70

Nested Cushion 2DBT 3DBT

0%

10%

2 0%

3 0%

4 0%

5 0%

6 0%

7 0%

8 0%

9 0%

10 0%

Nest ed Cushion 2DBT 3DBT

0%

10%

2 0%

3 0%

4 0%

5 0%

6 0%

7 0%

8 0%

9 0%

10 0%

Nest ed Cushion 2DBT 3DBT

0%

10%

2 0%

3 0%

4 0%

5 0%

6 0%

7 0%

8 0%

9 0%

10 0%

Nest ed Cushion 2DBT 3DBT

0%

10%

2 0%

3 0%

4 0%

5 0%

6 0%

7 0%

8 0%

9 0%

10 0%

Nest ed Cushion 2DBT 3DBT
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Nested Cushion 2DBT 3DBT

Figure 6. Average response time ± σ (top) and error rate (bottom) for each of the five tasks.

4.3 Results

Figure 6 shows the average response times in seconds
and average error rate per visualization method for each
of the five tasks. We observed the following results for
each task:
Size: Determining the three largest nodes took slightly
more time using beamtrees, which is understandable
since they allocate less of the screen space to leaves,
making small differences in size less obvious. The error
rate for this task was generally (but not significantly)
higher for beamtrees, supporting Cleveland [3], who
stated that interpretation speed is negatively related to
interpretation accuracy.
Depth: Interpreting the depth of a node did not show
significant difference in response times. Error rates seem
to indicate that nested treemaps and 3D beamtrees
perform slightly better in this respect, since both of them
dually encode depth information. Nested treemaps use
both an alternating subdivision scheme and nesting,
while 3D beamtrees make use of overlap and a third
dimension to indicate depth. Cushion treemaps use both
an alternating subdivision scheme and shading, but the
latter seems to be too subtle to provide accurate depth
information.
Levels: For global hierarchical information, such as the
total number of levels, 3D beamtrees perform
significantly (p < 0.01) better than both of the treemap
methods in both time and accuracy. Most users simply
rotated their view to the one depicted in figure 7d and

counted the number of levels. 2D beamtrees performed
somewhere in between, both in response time and
accuracy. Most users got frustrated using the treemap
methods to find the maximum depth, which accounts for
the reasonable response times but low accuracy.
Common parent: Finding the common parent did not
prove too difficult for three of the methods, although 3D
beamtrees stand out with a higher average and a rather
large standard deviation. This is due to the fact that
some users took the wrong approach and started rotating
the structure, looking at it from all sides and trying to
discern where and if beams were connected. In fact,
using the default top view proves much simpler,
considering the response times for 2D beamtrees. We
expect a definite learning factor here, so response times
should improve as users become more familiar with
beamtrees.
Memory: The results from the memory task were
comparable, though there is a definite (but not
statistically significant) difference between the
accuracies for 2D and 3D beamtrees. This might be due
to the difference between the flat shading and aliasing
effects in the OpenGL rendering and the crisper 2D
representation, but we are not sure.

Based on the results of this pilot study we expect 3D
beamtrees to perform significantly better than regular
treemaps when it comes to global structural information
such as maximum depth or balance. Not only does the
3D view provide stronger depth cues, but when viewed
from the side it provides views that are similar to a

conventional layered tree layout as well. Users also had
a strong preference for 3D beamtrees, as is indicated by
figure 7. This might be due to the fact that they were
better able to answer depth related questions with the 3D
version or the fact that 3D visualizations are generally
found more interesting than 2D versions. Most users
also felt they could perform better using beamtrees if
they had more experience using the visualization.

5. Conclusions

We have presented a generalisation of the treemap
algorithm. By scaling down individual nodes in a
treemap we introduce occlusion as an extra depth cue,
while retaining the size proportionality of treemaps. This
allows us to display both hierarchical and size
information in a single display. Both 2D and 3D variants
were implemented and tested, with the 3D variant
achieving significantly better results in determining the
number of levels in the tree. Compared to other tree
visualization methods that display size and structure
simultaneously, like Icicle plots and tree rings [1],
beamtrees offer higher scalability, up to thousands of
nodes.

Although 3D visualizations generally introduce new
problems such as occlusion and potentially difficult
interaction, we don’t expect these to be too much of a
problem. In the default top-down view none of the
leafnodes are overlapping, while interaction can be
facilitated by providing meaningful preset viewpoints
(i.e. top down and side-views). Adding more
sophisticated interaction methods like highlighting the
path to the root will also improve insight.

An advantage is that, contrary to regular treemaps,
beamtrees actually display almost all internal nodes.
One could argue that this is also the case with nested
treemaps, but for interaction to be efficient here, nesting
offsets would have to be around 5-10 pixels, taking up
too much valuable screen space. Although we have only
experimented with inspection, there might be some

interesting research opportunities in interaction with
beamtrees.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Nested Cushion 2DBT 3DBT

1 1
2

 Beamtrees only work with slice and dice
partitioning. Long thin rectangles already prevalent in
this type of partitioning, suffer even more when scaled
in their width. We partially avoided this problem by
applying a treemap style subdivision to all leafnodes and
simply discarding any remaining beams thinner than 2
pixels, but this is clearly not the most elegant solution. It
is an open question whether work that has been done in
the area of aspect ratio improvement is applicable to
beamtrees.

2

2 1 3
3

3 4
4 2

4 3
 In summary, we think the concept of beamtrees

presents a valuable improvement over treemaps,
displaying depth in a more natural way without
compromising any of the advantages of conventional
treemaps.

Figure 7. User preference rankings

References

[1] T. Barlow and P. Neville, “A Comparison of 2-D
Visualizations of Hierarchies”, Proceedings of IEEE
Symposium on Information Visualization 2001, IEEE CS
Press, pp 131-138, 2001.

[2] D. M. Bruls, C. Huizing, J.J. van Wijk, “Squarified
Treemaps”, Proceedings of the joint Eurographics and
IEEE TVCG Symposium on Visualization, 2000,
Springer, pp 33-42.

[3] W. Cleveland, “Elements of Graphing Data”, Kluwer
Academic Publishing, New York, NY, 1994.

[4] Human Computer Interaction Lab, “Treemap 3.2”,
available from http://www.cs.umd.edu/hcil/treemap3.

[5] P. Irani, M. Tingley and C. Ware, “Using Perceptual
Syntax to Enhance Semantic Content in Diagrams”, IEEE
Computer Graphics and Applications, September/October
2001, IEEE CS Press, pp 76-85.

[6] B. Johnson and B. Shneiderman, “Tree-Maps: A Space-
Filling Approach to the Visualization of Hierarchical
Information Structures”, Proceedings of IEEE
Visualization ’91 Conference, IEEE CS Press, pp 284-
291, 1991.

[7] B. Shneiderman and M. Wattenberg, “Ordered Treemap
Layouts”, Proceedings of IEEE Symposium on
Information Visualization 2001, IEEE CS Press, pp 73-
78.

[8] Technische Universiteit Eindhoven, “SequoiaView”,
available from http://www.win.tue.nl/sequoiaview.

[9] F.Vernier and L. Nigay, “Modifiable Treemaps
Containing Variable Shaped Units”, IEEE Information
Visualization 2000 Extended Abstracts, available from
http://iihm.imag.fr/publs/2000/Visu2K_Vernier.pdf.

[10] J.J. van Wijk and H.M.M. van de Wetering, Cushion
Treemaps: “Visualization of Hierarchical Information”,
Proceedings of IEEE Symposium on Information
Visualization 1999, IEEE CS Press, pp 73-78, 1999.

	Introduction
	Related Work
	Beamtrees
	Constrained scaling
	Algorithm
	Beamtree Visualisation

	User test
	Setup
	Procedure
	Results

	Conclusions
	
	
	
	
	
	
	
	References

