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Abstract 
 
Beamtrees are a new method for the visualization of 

large hierarchical data sets. Nodes are shown as 
stacked circular beams, such that both the hierarchical 
structure as well as the size of nodes are depicted. The 
dimensions of beams are calculated using a variation of 
the treemap algorithm. A small user study indicated that 
beamtrees are significantly more effective than nested 
treemaps and cushion treemaps for the extraction of 
global hierarchical information. 

 
1. Introduction 

The visualization of large hierarchical datasets is an 
important topic in the visualization community. The 
main problem is the limited amount of display space. 
Traditional node link diagrams lead to cluttered displays 
when used to visualize more than a few hundred nodes. 
They are therefore unsuitable to visualize, for instance, 
an average directory structure, containing tens of 
thousands of nodes. Possible solutions to this problem 
are threefold: We can increase available display space, 
by either using three dimensional and/or hyperbolic 
spaces; we can reduce the number of information 
elements by clustering or hiding nodes; or we can use 
the given visualization space more efficiently by using 
every available pixel. Of the latter category of solutions 
treemaps are the prime example.  

Treemaps are compact displays, which are 
particularly effective to visualize the size of the leaves 
in a tree. However, one important drawback of treemaps 
is that the hierarchical structure is harder to discern than 
in conventional tree browsers: All space is used for the 
display of leaf nodes, and the structure is encoded 
implicitly. A number of attempts have been made to 
overcome this problem, the most notable being the use 
of nesting and shading. 

 Inspired by treemaps, we present a new algorithm 
that visualizes the structure more explicitly. The user is 
enabled to adjust the visualization to his or her 
preferences: Either all space can be used for the 
leafnodes, which results in a conventional treemap, or 

more space can be used for the display of the 
hierarchical structure, which results in a beamtree. More 
specifically: where nested treemaps use nesting to 
indicate a parent-child relationship, we use overlap (Fig 
1). The hierarchical structure is visualized as a stack of 
rectangles and shading and 3D are used to strengthen the 
perceived depth in the structure. 
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Figure 1. Displaying hierarchical data by 
   (a) Nesting (b) Overlap 

Section 2 discusses the basic treemap algorithm as 
well as a number of variations. The beamtree algorithm 
is presented in section 3 and section 4 discusses the 
results of a user test comparing treemaps to beamtrees. 
Finally, section 5 summarizes the results and discusses 
future work. 

 
2. Related Work 

Treemaps, invented by Johnson and Shneidermann in 
1991 [6], are rectangular displays of trees that use the 
available visualization space very efficiently. The basic 
treemap algorithm is straightforward: An arbitrary 
rectangle representing the root node of the tree is 
horizontally subdivided into smaller rectangles, where 
each smaller rectangle represents a child of the root 
node, with the area of the rectangle being proportional to 
the size attribute of the node. This process is then 
repeated recursively, with the direction of the 
subdivision alternating between horizontal and vertical. 
Treemaps are especially useful for the display of large 
hierarchical datasets in which the size attribute of a node 
is important. As the size of each rectangle is 



proportional to the size of the node, one can easily spot 
the largest nodes in the tree. 

 However, standard treemap representations have two 
problems. Firstly, the method often leads to high aspect 
ratios (i.e. long thin rectangles). These make it more 
difficult to compare sizes and lead to interaction 
problems. Secondly, since the leaf nodes take up all of 
the visualization space, no space remains for the internal 
nodes of the tree. This makes it difficult to reconstruct 
the hierarchical information from the treemap, 
especially when dealing with large, deep trees. Recent 
research has tried to provide answers for both of these 
problems. New subdivision schemes have been 
developed by [2,7,9] amongst others, producing better 
aspect ratios but worsening layout stability. Methods to 
improve the display of hierarchical information include 
nesting [6,9], line width, color and, more recently, 
shading [10]. However, these methods still require a 
significant cognitive effort to extract the actual tree 
structure from the picture, especially when compared to 
the traditional node-link visualization. The use of 
nesting also influences the area of nodes deeper in the 
hierarchy since more space has to be reserved for the 
borders. We present a new approach that uses spatial 
ordering to display hierarchical ordering, while 
maintaining the proportionality property of treemaps. 

 
3. Beamtrees 

Since treemaps already use two dimensions to display 
size, we use a third dimension, i.e. display depth, to 
indicate depth in the tree. However, all of the available 

display space is already used up by the leaves, so we 
have to reduce the size of the leaves. As a first step we 
adapt the standard treemap algorithm: Instead of 
displaying the leaves space-filling we render all 
rectangles representing nodes with a scaled width. In 
other words, we reduce their dimension perpendicular to 
the direction of subdivision. Figure 2 shows that, as the 
scaling factor decreases, the partial occlusion creates a 
stronger depth effect. 

A disadvantage is that leaf nodes tend to become very 
thin, even stronger than with standard treemaps. To 
reduce this problem and to decrease the number of 
separate elements in the display, we therefore treat leaf 
nodes differently.  Instead of scaling their width, we use 
a treemap style subdivision algorithm: We assign to 
each leaf node a section of its parent node that is 
proportional to its size (Fig 2e). To provide for a more 
pleasant display we sort the children of a node, such that 
all leaf nodes are aggregated at the top or left side of 
their parent rectangle (Fig 2f). Since all rectangles are 
scaled with the same scale factor their size is still 
proportional to the size of the node they represent. 

This display still suffers from problems however. 
Firstly, many non-leaf nodes have touching edges, 
making it more difficult to perceive them as separate 
visual entities. This can be resolved by also applying a 
scale factor to their length, using constraints to ensure 
the structure doesn’t break up in separate pieces. We 
elaborate on this in section 3.1. Secondly, the large 
number of overlapping rectangles makes the resulting 
display abstract and hard to interpret. This can be 
significantly improved by the use of shading (section 
3.2) 

c: 50% a: 100% b: 75% 

f: Sort children d: 25% e: Scale leaves treemap-style 

Figure 2. Scaling a treemap to a beamtree. 



3.1 Constrained scaling 

Since we did not scale the length of non-leaf 
rectangles, many of them still have touching edges (Fig 
3a). As this makes it more difficult to perceive them as 
different visual entities we therefore also scale the 
length of each rectangle. We obviously run into 
problems when applying unconstrained scaling to 
internal nodes, since the structure might fall apart into 
separate pieces when doing so. Another problem is that 
due to scaling, leaf nodes may overlap, which is also not 
desirable (Fig 3b). We therefore need constraints that 
limit the scaling of internal nodes. Leaf nodes do not 
pose a problem in this case, since their size only 
depends on the scaled size of their parent node. 

We calculate constraints bottom up in the tree, starting 
at the deepest internal nodes. We discern three cases for 
an internal node N: 
1. N has only leaf nodes as children: In this case we 

don’t need to compute constraints, since leaf nodes 
get scaled with their parent by definition (Fig 3c); 

2. N has only non-leaf nodes as children: To avoid 
the structure from breaking up into separate pieces 
we use the front edge of the rectangle representing 
the first child of N as a lower bound and the back 
edge of the rectangle representing the last child of 
N as an upper bound (Fig 3d); 

3. N has both leaf and non-leaf nodes as children: 
We can use the back edge of the last child node of 
N (i.e. x3) in the same manner as we did in the 
previous case. Since N also has leaf nodes as 
children we have to take space for them into 

account to avoid overlapping structures. Bound x2 is 
equal to the front edge of the bounding box 
encasing the first non-leaf child of N. Since we also 
know the total size of all leafnodes S(L) and the 
total size of all child nodes S(N), we can derive x1 
by solving (Fig 3e): 

a 

x2 – x1 S(L) 
=

 
Because the length of each rectangle might get scaled 
differently due to the above constraints, the area of a 
rectangle may no longer be proportional to the size of 
the node it represents. We solve this problem by scaling 
down the width for these rectangles appropriately, so the 
resulting area remains proportional to the node size.  
 
3.2 Algorithm 

To show that the above-mentioned cases can easily 
be integrated in the conventional treemap algorithm, we 
present the entire beamtree algorithm here in detail. We 
use the following data types: 

 
Dir = (X,Y); 
Bound = (Min, Max); 
Rectangle = array[Dir, Bound] of real; 
Node = class 

            sizeN : real; 
  sizeL: real; 

 child : array[1..nchild] of Node; 
 nleaf: 1..nchild; 
 rt : Rectangle; 
 rs : Rectangle; 
 function rbound: Rectangle; 

         end; 

x3 – x1 S(N) 

b 

c N 

d N 

e N 

x1 x2 x3

Figure 3. Scaling lengths 



Node attributes sizeN and sizeL store S(N) and S(L) 
respectively. Array child contains nchild childnodes, 
sorted such that the first nleaf nodes in this array are 
leafnodes. The dimensions of the rectangle representing 
the node in a regular treemap are stored in rt, while rs 
stores the scaled version of the same rectangle. Finally, 
function rbound returns the bounding rectangle for a 
scaled treemap rectangle and its children. 

To facilitate notation we use three auxiliary 
functions: Function Alt alternates the direction of 
subdivision (i.e. Alt(X) = Y and Alt(Y) = X). Functions 
SetSize and GetSize respectively assign and return the 
length or width of a rectangle: 
 
procedure SetSize(var r: Rectangle; d: Dir; s: real); 
var c: real; 
begin 
    c := (r[d, Min] + r[d, Max])/2; 
    r[d, Min]  := c – s/2; 
    r[d, Max] := c + s/2 
end; 
 
function GetSize(r: Rectangle; d: Dir): real; 
begin 
   GetSize := r[d, Max] – r[d, Min] 
end; 
 
The main algorithm is similar to the original treemap 
algorithm from [6], using two extra procedures to scale 
down the rectangles. Note that non-leaf nodes have to be 
scaled before leaf nodes, because for scaling the latter 
we need information on the (possibly constrained) 
scaled length of their parentnode. 
 
procedure Node.BeamTreeLayout(r: Rectangle; d: Dir); 
var i : integer; f: real; 
begin 
   rt := r; 
   if sizeN > 0 then f := GetSize(rt, d) / sizeN else f :=0; 
   for i := 1 to nchild do 
   begin 
      r[d, Max]:= r[d, Min] + f  * child[i].sizeN; 
      child[i].BeamTreeLayout(r, Alt(d)); 
      r[d, Min]:= r[d, Max] 
    end; 
    if nchild > 0 then ResizeNode(d); 
    if nleaf   > 0 then ResizeLeavesOfNode(d);    
end; 
 
Scaling of internal nodes is done in method ResizeNode. 
Global parameters LengthScale and WidthScale contain the 
scale factors for the length and width respectively. In 
practice, values of 0.95 for LengthScale and 0.35 for 
WidthScale give good results. The scale factor is applied 
to the original treemap rectangle rt in the second line. If 
we are dealing with a case 2 or case 3 internal node (see 
paragraph 3.1), we have to apply constraints to the 
scaled rectangle. Finally, the difference between the 
unconstrained and constrained scaled lengths is taken 

into account when scaling the width, to maintain size 
proportionality. 
 
procedure Node.ResizeNode(d: Dir); 
var L,W, x1, x2, x3: real; 
begin 
     rs := rt; 

L  := LengthScale* GetSize(rt, d); 
SetSize(rs, d, L); 
 
if nleaf = 0 then /* Case 2 */ 
begin 
    rs[d, Min]:= min(rs[d, Min],   child[1].rs[d, Min]); 
    rs[d, Max]:= max(rs[d, Max], child[nchild].rs[d, Max]) 
end else 
if nleaf  < nchild then /* Case 3 */ 
begin 
   x2 := child[nleaf + 1].rbound[d, Min]; 
   x3 := max(rs[d, Max], child[nchild].rs[d, Max]); 
   x1 := x3 – (x3–x2)/( 1– sizeL / sizeN); 
   rs[d, Min]:= Min(rs[d, Min], x1); 
   rs[d, Max]:= x3 
end; 
   
W := WidthScale*GetSize(rt, Alt(d))*L/GetSize(rs, d); 
SetSize(rs, Alt(d), W); 

end; 
 
In a last step we resize the leaves of a node in a treemap 
style fashion, using the scaled size of their parent as the 
initial rectangle. 
 
procedure Node.ResizeLeafsOfNode(d: Dir); 
var i : integer; f : real; r : Rectangle; 
begin 
    r := rs; 
    if sizeN > 0 then f := GetSize(r, d) / sizeN else f := 0; 

for i := 1 to nleaf do 
begin 
   r[d, Max] := r[d, Min] + f * child[i].sizeN; 
   child[i].rs := r; 
   r[d, Min] := r[d, Max] 
end 

end; 
 
 
3.3 Beamtree Visualisation 

Though occlusion is a strong depth cue, it also 
presents some new problems, the most notable being the 
fact that overlapping rectangles tend to break up into 
visually separate pieces. A solution to this problem is 
the use of shading [5] to indicate the direction of 
subdivision. As such, nodes are no longer visualized as 
two-dimensional rectangles but tend to resemble three-
dimensional round beams, further strengthening the 
perceived depth in the picture. Additional depth cues 
can be provided by atmospheric attenuation and cast 
shadows (Fig. 4). Figure 5a shows a file system 
rendered in 2D using the above-mentioned cues. 



         shadows and attenuation shading overlap 

Figure 4. Adding visual cues 

Another strong depth cue is motion parallax. We 
implemented a prototype using OpenGL, in which the 
user can rotate the beamtree structure and return to the 
top-down view at the press of a button. An extra 
advantage of a three dimensional view is that the user 
can move his or her viewpoint to a point parallel to a 
beam direction and view the entire structure in a more 
conventional way with one display axis indicating node 
depth (Fig 5c). As height for each beam we choose the 
minimum of width and length, as this provides the most 
aesthetically pleasing picture. Disadvantage is that, with 
height varying over each beam, beams at the same level 
in the tree do not necessarily get laid out at the same 
depth. We therefore provide an option to layer the stack 
of beams, that is, display each beam at a depth 
proportional to its depth in the tree (Fig. 5d). 
Connections between beams are indicated by lines when 
beams are displayed in layered mode. To make it easier 
for the user to maintain context, transitions to and from 
layered mode are animated. 

Instead of explicitly modeling every leaf node in 3D, 
we used procedurally generated one-dimensional texture 
maps to represent leaves.  Depending on the number of 
leafnodes of the node under consideration, resolution of 
the texture can be increased. Using this approach we 
were able to render more than 25,000 nodes in real-time 
on a PC with a GeForce2 graphics card (Fig 5b). 

 
4. User test 

A small pilot study was conducted to test if a 
combination between explicit hierarchical information 
and treemap-style size information is an improvement 
over existing methods. Although a recent study [1] 
suggests treemaps are not the most ideal visualization 
tool for small hierarchies, we feel there are not many 
alternatives for larger (say over 200 nodes) hierarchical 
structures. We therefore conducted a similar user test, 
comparing both the 2D and 3D beamtrees to cushion 
treemaps, as implemented in SequoiaView [8], and 
nested treemaps, as implemented in HCIL’s Treemap 
3.2 [4]. Twelve coworkers participated in the 
experiment, none of which were familiar with the 

concept of beamtrees, although seven were familiar with 
general treemap concepts. 

 
4.1 Setup 

The experiment was set up as a 4 x 5 factorial design, 
with 5 tasks for each of the 4 visualization methods (2D 
Beamtrees, 3D Beamtrees, Nested Treemaps and 
Cushion Treemaps). The tasks focused on: 
- File size: Users had to select the three largest leaf 

nodes. Any node could be selected, and a response 
was judged correct only if all three largest leaves 
were selected. 

- Tree topology: Users had to indicate level of a 
predetermined node. To avoid potential confusion 
the level of the root node was defined as 1. 

- Tree topology: Users had to indicate the total 
number of levels in the tree. 

- Tree topology: Users indicated the deepest 
common ancestor of two predetermined nodes. 

- Node memory: In order to test how fast user could 
achieve a mental map of the tree structure, they 
were asked to memorize the positions of two 
predetermined nodes. If the user believed he or she 
could remember the location, the view was closed 
and reshown at a different size, to prevent users 
from remembering the screen location instead of 
node location. Users then had to indicate the 
positions of both nodes. 

 
4.2 Procedure 

We created 4 smaller randomized trees consisting of 
approximately 200 nodes and 4 randomized larger ones 
of approximately 1000 nodes. Node sizes were 
distributed using a log-normal distribution.  

For each visualization method participants had to 
perform all 5 tasks for both a smaller and a larger tree, 
for a total of 40 tasks per participant. Trees and methods 
were matched up randomly and the order of 
visualization methods was also randomized. The order 
of tasks to be performed for each tree remained the same 
throughout the experiment. 



  

  
 
   Figure 5.  a) Filesystem rendered in 2D,       b) Same filesystem in 3D, 

c) Layered orthogonal view,       d) Layered isometric view 

a b

c d

All visualizations used straightforward slice-and-dice 
partitioning and were displayed at a resolution of 
1280x1024 pixels. Nested treemaps used a 3-pixel 
border. Beamtrees used scale factors of 0.35 for width 
and 0.95 for length. Node labels were not displayed, so 
users had to rely entirely on the visualization instead of 
textually encoded information. Detail size information 
about each node was still available by means of a tooltip 
window that popped up when a user moved the mouse 
over a node. 

If users indicated they were not familiar with 
treemaps they were given a short explanation on the 
general principle of treemaps, followed by a small test to 
see if they had understood the concept. The tests for 
each visualization method were preceded by an 
explanation on how to interpret the visualization method 
and what tasks had to be performed. Subsequently, one 
timed trial run was performed to make the participant 

more comfortable with the task. During this explanation 
and trial run the participant was free to ask questions. If 
the participant was convinced he or she understood the 
visualization method and the tasks to be performed, 
actual testing began. Participants were not allowed to 
ask questions and no feedback on response time and 
accuracy was provided during the timed run. 

 Timing was self-paced and started immediately after 
the user was asked a question. Timing ended when the 
user verbally indicated he or she had found the answer, 
or, in the case of the memory task, thought he or she 
could remember the location of the nodes. At the end of 
all tests users rated the methods based on their 
subjective preference. 
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Figure 6. Average response time ± σ (top) and error rate (bottom) for each of the five tasks. 

4.3 Results 

Figure 6 shows the average response times in seconds 
and average error rate per visualization method for each 
of the five tasks. We observed the following results for 
each task: 
Size: Determining the three largest nodes took slightly 
more time using beamtrees, which is understandable 
since they allocate less of the screen space to leaves, 
making small differences in size less obvious. The error 
rate for this task was generally (but not significantly) 
higher for beamtrees, supporting Cleveland [3], who 
stated that interpretation speed is negatively related to 
interpretation accuracy. 
Depth: Interpreting the depth of a node did not show 
significant difference in response times. Error rates seem 
to indicate that nested treemaps and 3D beamtrees 
perform slightly better in this respect, since both of them 
dually encode depth information. Nested treemaps use 
both an alternating subdivision scheme and nesting, 
while 3D beamtrees make use of overlap and a third 
dimension to indicate depth. Cushion treemaps use both 
an alternating subdivision scheme and shading, but the 
latter seems to be too subtle to provide accurate depth 
information.  
Levels: For global hierarchical information, such as the 
total number of levels, 3D beamtrees perform 
significantly (p < 0.01) better than both of the treemap 
methods in both time and accuracy. Most users simply 
rotated their view to the one depicted in figure 7d and 

counted the number of levels. 2D beamtrees performed 
somewhere in between, both in response time and 
accuracy. Most users got frustrated using the treemap 
methods to find the maximum depth, which accounts for 
the reasonable response times but low accuracy. 
Common parent: Finding the common parent did not 
prove too difficult for three of the methods, although 3D 
beamtrees stand out with a higher average and a rather 
large standard deviation. This is due to the fact that 
some users took the wrong approach and started rotating 
the structure, looking at it from all sides and trying to 
discern where and if beams were connected. In fact, 
using the default top view proves much simpler, 
considering the response times for 2D beamtrees. We 
expect a definite learning factor here, so response times 
should improve as users become more familiar with 
beamtrees.  
Memory: The results from the memory task were 
comparable, though there is a definite (but not 
statistically significant) difference between the 
accuracies for 2D and 3D beamtrees. This might be due 
to the difference between the flat shading and aliasing 
effects in the OpenGL rendering and the crisper 2D 
representation, but we are not sure. 

Based on the results of this pilot study we expect 3D 
beamtrees to perform significantly better than regular 
treemaps when it comes to global structural information 
such as maximum depth or balance. Not only does the 
3D view provide stronger depth cues, but when viewed 
from the side it provides views that are similar to a 



conventional layered tree layout as well. Users also had 
a strong preference for 3D beamtrees, as is indicated by 
figure 7. This might be due to the fact that they were 
better able to answer depth related questions with the 3D 
version or the fact that 3D visualizations are generally 
found more interesting than 2D versions. Most users 
also felt they could perform better using beamtrees if 
they had more experience using the visualization. 

 
5. Conclusions 

We have presented a generalisation of the treemap 
algorithm. By scaling down individual nodes in a 
treemap we introduce occlusion as an extra depth cue, 
while retaining the size proportionality of treemaps. This 
allows us to display both hierarchical and size 
information in a single display. Both 2D and 3D variants 
were implemented and tested, with the 3D variant 
achieving significantly better results in determining the 
number of levels in the tree. Compared to other tree 
visualization methods that display size and structure 
simultaneously, like Icicle plots and tree rings [1], 
beamtrees offer higher scalability, up to thousands of 
nodes. 

Although 3D visualizations generally introduce new 
problems such as occlusion and potentially difficult 
interaction, we don’t expect these to be too much of a 
problem. In the default top-down view none of the 
leafnodes are overlapping, while interaction can be 
facilitated by providing meaningful preset viewpoints 
(i.e. top down and side-views). Adding more 
sophisticated interaction methods like highlighting the 
path to the root will also improve insight.  

An advantage is that, contrary to regular treemaps, 
beamtrees actually display almost all internal nodes. 
One could argue that this is also the case with nested 
treemaps, but for interaction to be efficient here, nesting 
offsets would have to be around 5-10 pixels, taking up 
too much valuable screen space. Although we have only 
experimented with inspection, there might be some 

interesting research opportunities in interaction with 
beamtrees. 
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 Beamtrees only work with slice and dice 
partitioning. Long thin rectangles already prevalent in 
this type of partitioning, suffer even more when scaled 
in their width. We partially avoided this problem by 
applying a treemap style subdivision to all leafnodes and 
simply discarding any remaining beams thinner than 2 
pixels, but this is clearly not the most elegant solution. It 
is an open question whether work that has been done in 
the area of aspect ratio improvement is applicable to 
beamtrees. 
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 In summary, we think the concept of beamtrees 

presents a valuable improvement over treemaps, 
displaying depth in a more natural way without 
compromising any of the advantages of conventional 
treemaps. 

Figure 7. User preference rankings 
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