
1

Jazz: An Extensible
Zoomable User Interface
Graphics Toolkit in Java

WOLFGANG AiGNER
Matr.Nr.: 9755342

aigner@asgaard.tuwien.ac.at

MARTiN TOMiTSCH
Matr.Nr.: 9726166

martin.tomitsch@rise.tuwien.ac.at

Benjamin B. Bederson, Jon Meyer, Lance Good
Human-Computer Interaction Lab, University of Maryland

Proceedings of the ACM Symposium on
User interface software and technology (UIST), 2000, p. 171-180

UE Informationsvisualisierung, SS 2004 Gruppe 3

WOLFGANG AiGNER, MARTiN TOMiTSCH2

Content
Zoomable User Interfaces

Semantic Zooming

Jazz

Example Application

Monolithic vs. Minilithic Approach

Scene Graphs

Piccolo

Our Implementation

WOLFGANG AiGNER, MARTiN TOMiTSCH3

Zoomable User Interfaces
using a virtual canvas and cameras for displaying
information

abstract data is mapped to 2D graphic
representations (onto a virtual canvas)
a portion of the virtual canvas is seen on the display
through a virtual “camera”

requirements for ZUIs:
support for custom application graphics and
traditional widgets
performance should scale with complex scenes
view navigations (zooms and pans) should be
smooth and continuously animated

 space-scale diagrams (Furnas and Bederson)
 smooth and efficient zooming and panning
(Wijk and Nuij)

WOLFGANG AiGNER, MARTiN TOMiTSCH4

Semantic Zooming
conventional geometric zoom

objects change only size
semantic zoom

affects not only size of objects but their
representation
objects change shape or even their very presence
in the display

4

2

WOLFGANG AiGNER, MARTiN TOMiTSCH5

Jazz
predecessors: Pad/Pad++

written in tcl/tk
supports semantic zooming
monolithic and inflexible

Jazz
a minilithic Java toolkit for creating ZUI
applications
uses the Java2D renderer

 supports embedded Swing widgets
uses a basic hierarchical scene graph model

successor: Piccolo
WOLFGANG AiGNER, MARTiN TOMiTSCH6

Example Application

Space tree: a novel node-link tree browser

WOLFGANG AiGNER, MARTiN TOMiTSCH7

Monolithic vs. Minilithic
monolithic (standard) approach

relatively small number of classes
to provide a large amount of
functionality

inherited by all of the widgets in
the toolkit

drawbacks

leads to a very complex hard-to-
learn top level class

developers are forced to accept
the functionality provided by the
top-level class

all inherited classes pay for any
extra functionality

minilithic design
one feature per class
classes are working together
advantages

more flexible
code is less complex

WOLFGANG AiGNER, MARTiN TOMiTSCH8

Scene Graph (1/2)

hierarchical scene graph model with cameras

graph of visual and non visual elements

nodes
relationships between objects

visual components
geometry and color

 cameras
display a view of a scene graph visually

functionality by composing simple objects
rather than by class inheritance

3

WOLFGANG AiGNER, MARTiN TOMiTSCH9

Scene Graph (2/2)

JFrame

ContentPane

JPanel

JPanel

GeneralPath GeneralPath

Rectangle

Jazz

Swing

WOLFGANG AiGNER, MARTiN TOMiTSCH10

Piccolo
descendant of Jazz

goal: similar feature set + easier to use
complexity

no separation between nodes and visual
components (no ZVisualLeaf decoration)

speed / memory
less memory usage (65 kB vs. 450 kB .jar)

features
not supported yet: hyperlinks, clip group,
constraint group, fade group, layout managers,
selection group, spatial index, embedding Swing
objects

WOLFGANG AiGNER, MARTiN TOMiTSCH11

Our Implementation (1/2)
Basic Idea:

Using Piccolo to implement a zoomable
version of “PlanningLines”

PlanningLines

further development of LifeLine/GANTT
chart

visualizing temporal (planning) activities

hierarchical decomposition

temporal uncertainties
WOLFGANG AiGNER, MARTiN TOMiTSCH12

Our Implementation (2/2)

