7. Stochastic Fractals

- Simulation of Brownian motion
- Modelling of natural phenomena, like terrains, clouds, waves, ...
- Modelling of microstructures, like erodism, fur, bark, ...
- Usefull for solid textures, like marble, ...

Christoph Traxler
7. Stochastic Fractals

Diffusion Limited Aggregation (DLA)

- Electrodeposition of zinc sulfate particles

![Diagram showing electrodeposition process](image1)

- Carbon cathode
- Zinc anode
- n-butyl-acetate
- Zinc sulfate solution

Diffusion Limited Aggregation (DLA)

![Fractal pattern](image2)
7. Stochastic Fractals

Diffusion Limited Aggregation (DLA)

- Particles are suspended in a liquid and walk randomly towards the cathode
- Such an erratic movement of particles in a liquid is described by Brownian motion
- The effect is caused by very light collisions with surrounding molecules
7. Stochastic Fractals

Diffusion Limited Aggregation (DLA)

- Complex field lines between crystal branches also influence the dynamic

Lichens – Aggregation of Microorganisms

7.4
7. Stochastic Fractals

Simulation of DLA

- Using a pixel raster, one pixel is the cathode
- Define a region of interest around the cathode pixel, e.g. a circle
- Inject a particle at the boundary of the region and let it move randomly from one pixel to another
- If it walks out of the region, forget it and start again with a new particle

If it gets close to the cathode it attaches and becomes an additional cathode pixel

The procedure is repeated until a dendrite evolves
7. Stochastic Fractals

Simulation of DLA
- Aggregation time determines color

3D-DLA
- Website:
 - markjstock.org/dla3d/

7.6
7. Stochastic Fractals

Brownian Motion

- Discovered 1827 by the botanist R. Brown
- Describes the movement of small particles of solid matter in liquid
- Mathematical examination by Einstein and Wiener
- Used by Mandelbrot for modelling of natural phenomena

Statistical Basics

- Continuous random variable X
 - Density function $f(x) \geq 0$: $\frac{d}{dx} F(x)$
 - Distribution function $F(x) = P(x \leq X): \int_{-\infty}^{x} f(t) dt$
 - Expectation $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$
 - Varianz $\text{Var}[X] = E[(X-E[X])^2]$
 - Standard deviation: $S(n) = \sqrt{\text{Var}[X]}$
7. Stochastic Fractals

Statistical Basics

- Correlation: Measurement for the mutual dependency of two random variables
- Some examples:
 - Gaussian distribution $N(\mu, \sigma)$
 - Normal distribution $N(0, 1)$
 - Exponential distribution
 - Bernoulli distribution
7. Stochastic Fractals

Statistical Basics

Density function
Gaussian distribution

Brownian Motion

- The position $X(t)$ of a particle at time t is the result of a stochastic (random) process:
 - $X(t+\Delta t) = X(t) + v \cdot \Delta t^{0.5} \cdot N(0,1)$
 - v ... average speed of a particle
 - $N(0,1)$... normal distributed random variable
7. Stochastic Fractals

Brownian Motion

- Properties:
 - The increment $X(t_2)-X(t_1)$ has Gaussian distribution $\Rightarrow E[X(t_2)-X(t_1)] = 0$
 - $\text{Var}[X(t_2)-X(t_1)] \propto |t_2-t_1|$
 - Continuous but not differentiable
 - The increments $X(t_0+t)-X(t_0)$ and $1/r^{0.5} (X(t_0+rt)-X(t_0))$ are statistically self similar

- If $t_0 = 0$, $X(t_0) = 0 \Rightarrow X(t)$ and $X(rt)/r^{0.5}$ are statistically equivalent

$r=8$
$r=4$
$r=2$
$r=1$
$r=0.5$
$r=0.25$
$r=0.125$
7. Stochastic Fractals

White Noise

- White noise, also called $1/f^0$-noise is completely uncorrelated from point to point.
- Its spectral density is a flat line \Rightarrow equal amounts at all frequencies, like white light.
- Simulated by pseudo random generator.

\[
\begin{align*}
\log S(f) & \quad 1/f^0 \\
\log f & \quad \log f
\end{align*}
\]

1/f-Noise

- Its physical origin is still a mystery.
- It is correlated from point to point.
- Most common type of noise found in nature (ocean flows, nerve membranes,...).
- No simple model to produce it.

\[
\begin{align*}
\log S(f) & \quad 1/f \\
\log f & \quad \log f
\end{align*}
\]
7. Stochastic Fractals

Brownian Motion
- It is the integral of white noise, also called $1/f^2$-noise
- Is more correlated than $1/f^0$- and $1/f$-noise
- It consists of many more low frequencies than high frequencies

![Brownian Motion Graph](image)

The Hurst Exponent
- The Hurst Exponent H was developed for hydrology by Harold Edwin Hurst
 - Study of time series of river Nile floodings
 - Allows better planning of dam sizes
- Assess variability of time series depending on observation period(s)
- Measure for the autocorrelation (or long term memory) of time series
 - \Rightarrow measure for stochastic self-similarity
- Directly related to the fractal dimension
7. Stochastic Fractals

The Hurst Exponent

Definition:

\[E \left[\frac{R(n)}{S(n)} \right] = Cn^H, n \to \infty \]

Estimation (similar to box counting):

1. Divide time series \(X \) of length \(n \) into subsets with length \(n_1=n/2, n_2=n/4, \ldots \)
2. Calculate the averaged rescaled range \(R/s \) for all divisions
3. Plot log/log diagram of \(E[R/s] \) vs. \(n_i \)
4. Slope of fitting line is \(H \)
7. Stochastic Fractals

The Hurst Exponent

Calculating the rescaled range:
1. Create mean adjusted time series:
 \[Y_t = X_t - E[X], \ t=1,2,...,n \]
2. Calculate cumulative deviate series:
 \[Z_t = \sum_{i=1}^{t} Y_i, t=1,2,...,n \]
3. The range \(R(n) \) is given by:
 \[R(n) = \max(Z_1, Z_2, ..., Z_n) - \min(Z_1, Z_2, ..., Z_n) \]
4. Rescaled range = \(R(n) / S(n) \), whereby \(S(n) \) is the standard deviation of the range

Fractal Brownian Motion (FBm)

Extension of Brownian motion using the Hurst Exponent \(H \) as parameter

Properties:
- \(\text{Var}[X(t_2)-X(t_1)] \propto |t_2-t_1|^{2H} \)
- \(X(t) \) and \(r^H \cdot X(rt) \) are statistically self-similar with respect to parameter \(H \)
- \(0 \leq H \leq 1 \), \(H \) determines the roughness of the curve
- FBm is properly rescaled by dividing the amplitudes by \(r^H \)
7. Stochastic Fractals

Fractal Brownian Motion (FBm)

- Effects of Hurst Exponent:
 - H = 0.5: Brownian motion, - increments are not correlated and independent
 - H > 0.5: Rather smooth curves, - increments have positive correlation
 - H < 0.5: Rough, erratic curves, - increments have negative correlation
- FBm with 0.5 < H < 0.9 looks very similar to contour lines of terrains

Fractal Brownian Motion (FBm)

- FBm is $1/f^\beta$-noise
- Fractal dimension $D = d + 1 - H = d + (3 - \beta)/2$
 - d indicates the topological dimension of $X(t)$
 - d=1: $X(t)$ - curves, $D = 2 - H = (5 - \beta)/2$
 - d=2: $X(s,t)$ - terrain, $D = 3 - H = (7 - \beta)/2$
 - d=3: $X(r,s,t)$ - clouds, $D = 4 - H = (9 - \beta)/2$
7. Stochastic Fractals

Fractal Brownian Motion (FBm)

- H = 0.2
 - D = 1.8
- H = 0.5
 - D = 1.5
- H = 0.8
 - D = 1.2

Midpoint Displacement

- Used by Archimedes (287-212 BC) for parabola construction
 \[P(x) = a - bx^2, \quad b > 0 \]
- Successive subdivision of a chord and displacement of the division points
- The midpoints of the k\(^{th}\) subdivision step are displaced by \(4^{-k\delta}\), where \(\delta = (x_A + x_B)/2\) and \(x_A, x_B\) are the endpoints of the subdivided chord
7. Stochastic Fractals

Midpoint Displacement

- Construction of the parabola

\[\frac{\delta}{8}, \frac{\delta}{16}, \frac{\delta}{4} \]

Takagi used the method (1900) with the displacement rule \(2^{-kd}\) which results in a self similar fractal curve.

Landsberg picked \(w\) arbitrary out of \((0.5, 1)\) and performed the method with \(w^k\), which also results in a self similar fractal curve.
7. Stochastic Fractals

Midpoint Displacement

- Takagi curve
- Landsberg curve

Using random displacement values to approximate FBm

\[X(t) \]

\[D_1 \]

\[D_2r \]

\[D_{2l} \]
7. Stochastic Fractals

Midpoint Displacement

- Step 1: \(X(1/2) = (X(0) + X(1))/2 + D_1 \)
- Step \(n \): Linear interpolation and displacement between two adjacent points

 - \(D_n \) is a normal distributed random variable

 \[
 E[D_n] = 0 \quad \text{Var}[D_n] = (1 - 2^{2H-2})/2^{2nH}
 \]
 - \(D_n = N(0, \delta_n) = \delta_n N(0, 1), \delta_n = \delta_{n-1} \cdot 0.5^{H/2} \)
 - \(X(t) \) and \(1/2^hX(2t) \) are statistically self similar

Midpoint Displacement

- 8 subdivision steps

Christoph Traxler 37

Christoph Traxler 38
7. Stochastic Fractals

Midpoint Displacement

- Only a coarse approximation of FBm
- Not correlated
- Subdivided parts are calculated independently of each other
- Visible artefacts at subdivision points, can be avoided by displacing all points in step k with D_k, $k=1,2,...,n$
- Efficient method, subdivision depth can easily be adapted to image resolution

Generating Terrains

- **Carpenter’s method**: Subdividing triangles:
 - Midpoint displacement is performed on the edges, \Rightarrow 4 new triangles are generated
 - Continue until the triangles are small enough
7. Stochastic Fractals

Generating Terrains

- Adjacent triangles have no influence on the subdivision of a triangle
- Visible artefacts along the edges (the mesh can be seen)

Better approach: Diamond & Square algorithm
Subdivision of a square is influenced by adjacent squares, ⇒ better approximation of FBm

old points new points
7. Stochastic Fractals

Generating Terrains

Christoph Traxler

7.22
7. Stochastic Fractals

Generating Terrains

- Mandelbrot’s suggestion: Use random numbers with a skew distribution, \(\Rightarrow \) more realistic landscapes

Design of landscapes:
- The shape of a terrain is only determined by pseudo random numbers
- No way to predict the shape for any seed value for the random number generator
- Solution: Merge two height fields with an \(\alpha \)-channel

\[F = \alpha \cdot F_1 + (1-\alpha) \cdot F_2 \]
7. Stochastic Fractals

Zoom Sequence

Christoph Traxler 47
Generating Clouds

- Draw the height field as color map with different transparency:
 - If \(F[i][j] < \) threshold then set the pixel to full transparency
 - Else set the transparency according to \(F[i][j] \)
- Results in a 2D-model of clouds, ⇒ suitable for background rendering and environment mapping
7. Stochastic Fractals

7.26

Generating Clouds

Ray Tracing of Terrains

- Visualization of a terrain demands much more effort than generating it
- Terrains are represented as fine triangle mesh, \(\Rightarrow\) huge number of triangles
- Ray-terrain intersection should be fast and memory consumption should be low
- Kajiya’s method (1983): Generate only those parts of the terrain which are necessary for intersection calculation
7. Stochastic Fractals

Ray Tracing of Terrains

Kajiya’s method:
- Each triangle is embedded into a prism which encloses the part of the terrain that is generated out of the triangle.
- If a ray intersects a prism then midpoint displacement is applied to the enclosed triangle.
- Four new prisms are generated which enclose the four new triangles.

The height of each prism is estimated according to stochastic properties of FBm.

The intersected prisms are stored in a list and are sorted by their distance from the eye point.

The recursion depth can be adapted to different levels of detail.
7. Stochastic Fractals

Ray Tracing of Terrains

Kajiya’s method:

- Low memory consumption, ⇒ high accuracy of approximation possible
- Efficient intersection calculation
- Complex shading models can be applied to fractal terrains

Christoph Traxler
7. Stochastic Fractals

Ray Tracing Terrain

Christoph Traxler

Ray Tracing Terrain

Christoph Traxler

7.29
Spectral Synthesis Method

- **Approximation of FBm by generating a spectral distribution of the form** $1/f^\beta$
- **Inverse Fourier transform** is used to obtain $X(t)$ in the time domain

$$X(t) = \sum_{k=1}^{n/2} (A_k \cos kt + B_k \sin kt)$$

- **Good approximation of FBm without artefacts**
- **Summing different noise octaves**

Spectral Synthesis Method

- **High computation time**
- **Does not proceed in stages of increasing spatial resolution**
- **High detail demands the same computation as low detail**
- **The whole object must be generated (also if only a small part is needed)**
7. Stochastic Fractals

Spectral Synthesis Method

- Adding higher frequencies

- Turbulence
 - Add absolute noise
 - Makes everything positive

Spectral Synthesis Method
7. Stochastic Fractals

Spectral Synthesis Method

Christoph Traxler

63

Spectral Synthesis Method

Christoph Traxler

64
7. Stochastic Fractals

Spectral Synthesis Method

Christoph Traxler

65

66

7.33
7. Stochastic Fractals

Spectral Synthesis Method

- Suitable for the generation of ocean waves
- Ocean waves are not approximated by FBm but by a spectral distribution of the form $1/f^5$, \Rightarrow not fractal
- Clouds can be generated by modification of the volume density of ellipsoids according to 3D-FBm
- Visualization with advanced volume rendering techniques

Christoph Traxler 67
7. Stochastic Fractals
7. Stochastic Fractals
7. Stochastic Fractals