4. Chaotic Behavior of Fractal Attractors

- Study the dynamic behavior of fractals
- Understand the stochastic method
- Assignment of an address to the points of an attractor A_∞
- Examination of the address space with dynamic system theory
- Chaotic properties of the address space can be transferred to the attractor

Addresses of Fractal Attractors

- Given: IFS $\{X; f_1, f_2, \ldots, f_n\}$ with the attractor $A_\infty = f_1(A_\infty) \cup \ldots \cup f_n(A_\infty)$, decomposed in n subsets
- Definition of the address of a point $x \in A_\infty$:
 - $x \in f_a(A_\infty) \Rightarrow$ address of x: $a \ldots$
 - $x \in f_af_b(A_\infty) \Rightarrow$ address of x: $ab \ldots$
- Infinite many indices are necessary to identify a point $x \in A_\infty$ exactly
4. Chaotic Behavior of Fractal Attractors

Addresses of Fractal Attractors

Hierarchy tree

\[A_\infty \cup f_1(A_\infty) \cup f_2(A_\infty) \]

Address tree

\[\sum_2 \]

\[\begin{array}{c}
1 \ldots \\
11 \ldots \\
12 \ldots \\

2 \ldots \\
21 \ldots \\
22 \ldots \\
\end{array} \]

Subtriangles of the Sierpinski gasket and the corresponding addresses of \(\sum_3 \)
4. Chaotic Behavior of Fractal Attractors

Addresses of Fractal Attractors

- Example: Addresses of subtriangles & points

![Diagram showing addresses of fractal attractors](image)

Address Space

- Def.: The **metric address space** (Σ_n, d_S) for an IFS $\{X; f_1, f_2, \ldots, f_n\}$ is defined by

$$\Sigma_n = \{\sigma_1 \sigma_2 \ldots \sigma_i \ldots \mid \sigma_i \in \{1 \ldots n\}\}$$

and the **Symbol Metric**

$$d_s(\alpha, \beta) = \sum_{i=1}^{\infty} \frac{|\alpha_i - \beta_i|}{(n+1)^i}$$

$\alpha = \alpha_1 \ldots \alpha_m \ldots$

$\beta = \beta_1 \ldots \beta_m \ldots$
4. Chaotic Behavior of Fractal Attractors

Address Space

- Def.: The mapping $\phi: \sum_n \rightarrow A_\infty$ is defined as
 $\phi(\sigma) = f_{\sigma_1}f_{\sigma_2} \ldots f_{\sigma_m} \ldots (x) = a \in A_\infty$,
 $\sigma \in \sum_n$, x arbitrary

- $\phi(\sigma)$ is independent of the starting point x

- ϕ is a continuous mapping, similar addresses correspond to nearby points

Address Space

- The metric spaces (\sum_n, d_S) and (A_∞, d) have the same properties

- Thus the dynamic behaviour of A_∞ can be analyzed by examining the dynamic behaviour of \sum_n

- $\phi^{-1}(a) = \{\sigma \in \sum_n: \phi(\sigma) = a\}$, $a \in A_\infty$, set of all addresses for a point a
4. Chaotic Behavior of Fractal Attractors

Address Space

- If each point of A_∞ has a unique address, then A_∞ is called totally disconnected.
- The Sierpinski gasket consists of infinite many branching (touching) points, thus only corner points have a unique address.

![Address Space Diagram]

Dynamic Systems

- Def.: Let (X,d) be a metric space and $f: X \rightarrow X$ a function, then $\{X, f\}$ is called dynamic system.
- Def.: The sequence $\{f_n(x)\} = \{x, f(x), f^2(x), \ldots\}$ is called orbit of $x \in X$.
- Example: (\sum_n, T) is a dynamic system, $T: \sum_n \rightarrow \sum_n$ is called shift function and defined as $T(\sigma_1 \sigma_2 \sigma_3 \sigma_4 \ldots) = \sigma_2 \sigma_3 \sigma_4 \ldots$.
4. Chaotic Behavior of Fractal Attractors

Dynamic Systems

- An IFS \(\{X; f_1, f_2, \ldots, f_n\} \) defines a special dynamic system \(\{H(X), W\} \), where \(W \) is the Hutchinson operator.

- The most interesting dynamic systems operate with non-linear functions (Julia sets, Mandelbrot set, strange attractors).

Dynamic Systems

- Orbit of \(\{R, f\} \): the fixpoints are the intersection points of the median with the graph.
4. Chaotic Behavior of Fractal Attractors

Fixpoints

- Def.: \(\{X,f\} \) is a dynamic system, a point \(p \in X \) is called **periodic point** if there exists a number \(n > 0 \), so that \(f^n(p) = p \).

 \(\{p, f(p), \ldots, f^n(p)\} \) is called **cycle** of \(p \) and \(n \) is called **cycle length** or **period** of \(p \).

- \(p \) periodic in \(\{X,f\} \) \(\iff \) \(p \) is fixpoint of \(\{X,f^n\} \)

- Minimal period of \(p = \min\{n \mid f^n(p) = p\} \)

Fixpoints

- Def.: A fixpoint \(x=f(x) \) of \(\{X,f\} \) is called **attractive**, if there exists an \(\varepsilon > 0 \), so that \(f \) is a contraction mapping in \(B(x,\varepsilon) \).

- **Repelling**, if there exists an \(\varepsilon > 0 \), \(s > 1 \), so that \(d(x,f(y)) \geq s \cdot d(x,y) \), \(\forall \ y \in B(x,\varepsilon) \)

attractive point

repelling point

Christoph Traxler
4. Chaotic Behavior of Fractal Attractors

Fixpoints

- The dynamic system \(\{H(X), W\} \) of an IFS has exactly one fixpoint, no periodic points, all orbits converge to \(A_\infty \).
- Usually dynamic systems have several fixpoints.
- A periodic point \(p \) with period \(n \) is called attractive (repelling), if \(p \) is an attractive (repelling) fixpoint of \(\{X, f^n\} \).

Example: \(\{R, f\}, f(x) = \lambda x(1-x), \lambda < 3 \)
4. Chaotic Behavior of Fractal Attractors

Fixpoints

- Example: \(\{R, f\}, f(x) = \lambda x(1-x), \lambda > 3 \)

![Diagram of fixpoints](image)

IFS Attractor as Dynamic Systems

- Def.: \(\{X; f_1, f_2, \ldots, f_n\} \) is an IFS, the shift transformation \(S: A_\infty \rightarrow A_\infty \) is defined as
 \[S(a) = f_i^{-1}(a), \quad \forall \ a \in f_i(A_\infty) \]
 \(\{A_\infty, S\} \) is a dynamic system

- \(f^m(A_\infty) \cap f^n(A_\infty) \neq \emptyset \Rightarrow S(a) \) is ambiguous
 \[\forall \ a \in f^m(A_\infty) \cap f^n(A_\infty) \]

- Orbits of points from \(A_\infty \) can be examined in \(\{A_\infty, S\} \) (backward orbits)
4. Chaotic Behavior of Fractal Attractors

IFS Attractor as Dynamic Systems

- Homomorphism between \(\{\sum_n, T\} \) and \(\{A_\infty, S\} \)
 - Function \(T \) has the same effect in \(\sum_n \) as \(S \) in \(A_\infty \)
 - The relation is established by \(\phi: \sum_n \rightarrow A_\infty \)
 \[\phi(T(\sigma)) = S(\phi(\sigma)) \]

Diagram:*

\[\sum_n \xrightarrow{T} \sum_n \xrightarrow{\phi} A_\infty \]
\[\sum_n \xrightarrow{S} A_\infty \]

IFS Attractor as Dynamic Systems

- The knowledge of the dynamic behavior of \(\{\sum_n, T\} \) can be applied to \(\{A_\infty, S\} \) as well
- It is much easier to examine the properties of \(\{\sum_n, T\} \) than of \(\{A_\infty, S\} \)
- \(\{\sum_n, T\} \) contains no geometric but only topological information about \(\{A_\infty, S\} \)
4. Chaotic Behavior of Fractal Attractors

Orbits of IFS Attractors

Example:
\[
\{\sum_{n=1}^{\infty} T_n \} \xrightarrow{\phi^{-1}} \{A_\infty, S\}
\]

\[
\begin{align*}
&a_0 \\
&1231322 = a_0 \\
&231322 = a_1 = f_1^{-1}(a_0) \\
&31322 = a_2 = f_2^{-1}(a_1) \\
&1322 = a_3 = f_3^{-1}(a_2) \\
&322 = a_4 = f_1^{-1}(a_3) \\
&22 = a_5 = f_3^{-1}(a_4) \\
&22 = a_6 = f_2^{-1}(a_5) = a_5
\end{align*}
\]

Examples:

Cantor set, orbit of the point \[s = 123111213212 \]

Orbit in Barnsely’s fern
4. Chaotic Behavior of Fractal Attractors

Chaos in Dynamic Systems

Def.: A dynamic system \(\{X, f\} \) is called chaotic if:

1. \(\{X, f\} \) is transitive
2. \(\{X, f\} \) is sensitive with respect to the starting conditions
3. The set of periodic orbits of \(f \) is dense in \(X \)

Orbits of points taken from an arbitrary small subset reach every part of \(X \)

Def.: \(\{X, f\} \) is transitive, if there exists a number \(n \) for the open sets \(U, V \subseteq X \) so that \(U \cap f^n(V) \neq \emptyset \)
4. Chaotic Behavior of Fractal Attractors

Chaos in Dynamic Systems

- \(\{\Sigma^n, T\} \) is transitive:
 - Any open set \(V \) with \(\forall \omega \in V \) exists a \(B(\sigma, \varepsilon) = \{\omega: d(\sigma, \omega) < \varepsilon\} \), \(B(\sigma, \varepsilon) \subseteq V \)
 - Example \(n=2 \):
 \[
 \sigma = \sigma_1 \sigma_2 \ldots \sigma_m \ldots \\
 \omega_1 = \sigma_1 \sigma_2 \ldots \sigma_m 11 \ldots \\
 \omega_2 = \sigma_1 \sigma_2 \ldots \sigma_m 12 \ldots \\
 \omega_3 = \sigma_1 \sigma_2 \ldots \sigma_m 21 \ldots \\
 \omega_4 = \sigma_1 \sigma_2 \ldots \sigma_m 22 \ldots
 \]
 - The \(\omega_i \) can be continued with any possible combination of symbols

Chaos in Dynamic Systems

- \(\{\Sigma^n, T\} \) is transitive:
 - \(\omega \in B(\sigma, \varepsilon) \Rightarrow \omega = \sigma_1 \sigma_2 \ldots \sigma_m \omega_1 \omega_2 \ldots, \omega_i \in \{1, \ldots, n\} \)
 - \(\Rightarrow T^m (\omega) = \omega_1 \omega_2 \ldots \)
 - \(\Rightarrow T^m (B(\sigma, \varepsilon)) = \Sigma \)
 - \(\Rightarrow T^m (V) \cap U \neq \emptyset, \forall U, V \subseteq X \)
4. Chaotic Behavior of Fractal Attractors

Chaos in Dynamic Systems

- **Def.:** \(\{X,f\} \) is sensitive towards starting conditions if there exists a number \(d > 0 \), so that \(\forall x \in X \) and \(\forall B(x,\varepsilon), \varepsilon > 0, \exists y \in B(x,\varepsilon) \) and \(n > 0 \), so that \(d(f^n(x), f^n(y)) > d \)

- Nearby orbits move away from each other

\[
\begin{align*}
B(x,\varepsilon) & \quad \circ \quad f^n(x) \\
y & \quad \circ \quad f^n(y)
\end{align*}
\]

Chaos in Dynamic Systems

- \(\{\Sigma_n,T\} \) is sensitive:
 - \(\mu = \sigma_1 \sigma_2 \ldots \sigma_m 1 \ldots \quad T^m(\mu) = 1 \ldots \)
 - \(\nu = \sigma_1 \sigma_2 \ldots \sigma_m 2 \ldots \quad T^m(\nu) = 2 \ldots \)
 - \(d_S(\mu,\nu) = 1/(n+1)^m \)
 - \(d_S(T^m(\mu),T^m(\nu)) = 1/(n+1) \)
 - \(\mu \) and \(\nu \) are the starting conditions for \(T \)
4. Chaotic Behavior of Fractal Attractors

Chaos in Dynamic Systems

- Def.: \((X, d)\) is a metric space, a set \(S \subseteq X\) is called dense in \(X\), if for each point \(x \in X\) there exists a sequence \(\{s_n\}\) in \(S\), with \(\lim s_n = x\)
 \((X\) is called closure of \(S)\)
- Example: The set of rational numbers \(Q\) is dense in \(R\)

Chaos in Dynamic Systems

- The set of periodic points \(P\) of \(\{\Sigma_n, T\}\) is dense in \(\Sigma_n\):
 - Arbitrary address \(\sigma\) & sequence of periodic addresses
 \[\sigma_1 \sigma_2 \ldots \sigma_m \ldots\]
 \[s_1 = \overline{\sigma_1}\]
 \[s_2 = \overline{\sigma_1 \sigma_2}\]
 \[\vdots\]
 \[s_m = \overline{\sigma_1 \sigma_2 \ldots \sigma_m}\]
4. Chaotic Behavior of Fractal Attractors

Chaos in Dynamic Systems

Fixpoints of Σ_n are repelling points:

Example $n = 2$:

- $\mu = \overline{1}$, fixpoint
- $\nu = 1112 \ldots$, Arbitrary
- $d_S(\mu, \nu) = 1/34$, $d_S(T^3(\mu), T^3(\nu)) \approx 1/3$
- Periodic points of Σ_n are repelling points
- Periodic points are dense in $\Sigma_n \Rightarrow \Sigma_n$ is densely covered by repelling points

--

Chaos in Dynamic Systems

$\{\Sigma_n, T\}$ is a chaotic dynamic system, because:

(1) It is transitive

(2) It is sensitive towards starting conditions

(3) Set of periodic orbits of T is dense in Σ_n

$\{\Sigma_n, T\}$ chaotic $\xrightarrow{\phi} \{A_{\infty}, S\}$ chaotic
Back to the Stochastic Method

1. The attractor \(A_\infty \) of an IFS \(\{X; f_1, f_2, \ldots, f_n\} \) is approximated by a random sequence of points \(x_n = f_i(x_{n-1}), i \in \{1, \ldots, n\} \)

2. Example: \(n=2 \), Random sequence 112 ...1:
 - Point \(x_0 \), \(x_1 = f_1(x_0) \), \(x_2 = f_1(x_1) \), \(x_3 = f_2(x_2) \), \ldots, \(x_{\text{max}} \)
 - Address \(\sigma \), \(1\sigma \), \(11\sigma \), \(211\sigma \), \ldots, \(\sigma_{\text{max}} \)

3. The sequence \(\{x_{\text{max}}, \ldots, x_3, x_2, x_1, x_0\} \) is an orbit of the chaotic system \(\{A_\infty, S\} \)

Back to the Stochastic Method

1. Dynamic system \(\{\Sigma_n, T\} \), starting point \(\sigma \):
 - \(\sigma \) periodic, quasiperiodic:
 - Orbit \(\{T^n(\sigma)\} \) converges to periodic repelling point
 - \(\sigma \) not periodic:
 - Orbit \(\{T^n(\sigma)\} \) comes closer to a periodic repelling point from which it moves away
 - New points of \(A_\infty \) are always generated
4. Chaotic Behavior of Fractal Attractors

Back to the Stochastic Method

- How frequent are starting points σ with a too short period?
- $U(p)$ - number of periodic orbits with minimal period p

$$U(p) = (n^p - \sum_{k \text{ divides } p} k \cdot U(k))/p$$

Example $\{\Sigma_2, \Sigma\}$:

- $U(1) = 2$ fixpoints 1, 2
- $U(2) = 1$ fixpoint 12
- $U(3) = 2$
- $U(10) = 99$
- $U(15) = 2182$
- $U(20) = 52377$
- $U(p)$ is a fast increasing function
4. Chaotic Behavior of Fractal Attractors

Back to the Stochastic Method

- If the starting point σ is periodic, then its period is very long with high probability.
- Orbits of chaotic dynamic systems are distributed among the whole attractor.
 - $\{x, f_1(x), f_2 f_1(x), f_2 f_1 f_1(x), ...\} x \in A_\infty$, covers A_∞.
 - $\{p, f_1(p), f_2 f_1(p), f_2 f_1 f_1(p), ...\} p \notin A_\infty$, converges to $\{x, f_1(x), f_2 f_1(x), f_2 f_1 f_1(x), ...\}$

Conclusion

- Examination of the chaotic behavior of fractal attractors of an IFS $\{X; f_1, f_2, ..., f_n\}$.
- Introduction of the address space Σ_n and the dynamic system $\{\Sigma_n, T\}$.
- Relation between $\{\Sigma_n, T\}$ and $\{A_\infty, S\} \rightarrow$ chaotic properties of $\{\Sigma_n, T\}$ can be transferred to $\{A_\infty, S\}$.
4. Chaotic Behavior of Fractal Attractors

Conclusion

- The stochastic method can be analyzed with (backward) orbits in \(\{A_\infty, S\} \)
- \(\{A_\infty, S\} \) is chaotic \(\Rightarrow \) orbit is distributed among the whole attractor with very high probability
- The random orbit generates a good approximation of \(A_\infty \)