Fractal Music

J. S. Bach, Canon Trias Harmonica, BWV 1072
www.youtube.com/watch?v=v62-kA6OXeE

- Algorithmic composition:
 - In general a way to procedurally generate music
 - It becomes fractal when based on the same types of iterative processes used to create fractal images
 - Mapping of geometric properties to musical parameters (melody, rhythm, tempo, etc.)
 - L-Systems can be used to generate rule-based compositions
Fractal Music

- Simple cells forming interesting and complex patterns when iterated
- Apply musical operations such as transposition, inversion, augmentation,...
- Analogy to geometric transformations like translation, scale and rotation applied to primitive objects

<table>
<thead>
<tr>
<th>Fractal Music</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonification:</td>
</tr>
<tr>
<td>Use sound to experience data and relationships</td>
</tr>
<tr>
<td>Complement visualization by addressing hearing</td>
</tr>
<tr>
<td>Map values of fractal iterations to musical parameters</td>
</tr>
<tr>
<td>Mandelbrot Music:</td>
</tr>
<tr>
<td>Use real value of z in z^2+c</td>
</tr>
<tr>
<td>Strange Attractors:</td>
</tr>
<tr>
<td>Map coordinate values to musical parameters</td>
</tr>
</tbody>
</table>

Fractal Music

- Sonification:
 - Use sound to experience data and relationships
 - Complement visualization by addressing hearing
 - Map values of fractal iterations to musical parameters
 - Mandelbrot Music:
 - Use real value of z in z^2+c
 - Strange Attractors:
 - Map coordinate values to musical parameters
Fractal Music

Links:

- Algorithmic composition:
 - www.donarcher.com/music.htm

- Sonification:
 - www.youtube.com/watch?v=Wu3iRB0O0cM
 - www.youtube.com/watch?v=izne0lfYAyA
 - www.youtube.com/watch?v=3Br57CsDAFw