
SteelWorms

Adam Papp

16.06.2014

1 Starting the game

The game can be started in full screen mode with 60Hz refresh rate by double
clicking on the exe. If it is started from command line, it must be started
from the bin directory. In this case a dummy argument like windowed can
be used to start in windowed mode. The current version is only a two-player
version, since there is no menu to set the number of players, but the algorithm
can handle any number of player. Please note, that the shader and texture
folder are placed next to the bin folder in the zip file. This is done, because
the development environment is also set up this way and the exe finds files
using the following structure:

• {any directory}/SteelWorms.exe

• shader/shadow.vert

• texture/heightmap.bmp

2 Implementation

The implementation consist of the following classes:

• Texture: Encapsulates a texture in the GPU. It holds the handle for
the texture in the GPU memory. The BMP loading algorithm is a
static function of the texture class.

1



• Model: Encapsulates a graphical object model in the GPU. Holds the
GPU vertex buffer objects for indices, vertices, normals, texture coor-
dinates. This way the every model is only once in the GPU memory.

• Shader: Encapsulates a shader program. It holds the handle for the
GPU Shader program.

• Scene: A helper class to be able to access such objects like the terrain
and camera from other SceneObjects. It holds all the SceneObjects
which are rendered.

• SceneObject: The base class of the objects which are rendered. It has
a pointer to a shader, a model, a scene, holds the model matrix and a
handle to a vertex array object. It has a parent child hierarchy. The
drawing function for all the SceneObjects are written here. Uses the
generic vertex and fragment shaders.

• Sun: Implements the shadow map creation. Returns constants for
lighting. Uses the shadow vertex and fragment shaders.

• Cube: Obsolete.

• Camera: Implements the camera movement. It is inherited from the
SceneObject.

• Terrain: Computes the height of the terrain at any position. To cre-
ate a water surface also this class is used. It is inherited from the
SceneObject.

• Tank: Implements the tank movement. The parent of the Turret class
which is the parent of the Gun class. They are inherited from the
SceneObject.

• WheelTrack: Implements a CPU particle system. It holds an own
Model of one quad. Uses the particle vertex and fragment shaders.

• Bullet: Implements the bullet movement. It is inherited from the Sce-
neObject.

2



• GameLogic: The complete game logic is written in this class. It has
pointers to the player tanks. It is responsible for handling turns, creat-
ing and destroying the bullet, to detect bullet impact, to detect water
damage and for the win/loose condition.

• Debug: The switches to experiment OpenGL performance and quality
are implemented here.

2.1 Camera

The camera is a SceneObject, but it has also a view matrix. The compu-
tation of the view matrix is done from the horizontal and vertical angles of
the camera. From these Spherical coordinates the Cartesian coordinates are
computed, these are the direction and the right vector. The cross product
of this two vector gives the up vector. Then using the glm::lookAt func-
tion, the view matrix is computed. The camera has a projection matrix.
On zooming this projection matrix is recomputed using the glm::perspective
function. When an object is being rendered, the view matrix of the camera is
returned. The following website was used to understand and implement the
camera concept. http://www.opengl-tutorial.org/beginners-tutorials/tutorial-
6-keyboard-and-mouse/.

2.2 Animated objects

The tanks are moved by user interaction. They can be moved forward or
backward and can be rotated. A tank moves on the terrain. Every tank has
a turret, which can me rotated right and left. The turret has gun, which
can be tilted up and down. They are connected with a parent child relation.
The tank model was found online(see License in texture folder). To import
it, the Assimp library was used.

Important: The latest Assimp library must be compiled from the repos-
itory. The current(3.0) version fails to load the model. The texture coordi-
nates are still loaded incorrectly. Probably this happens because the model
was generated using a very old program. Also there is something wrong with
the normal vectors. One track of the model is upside down. The reason for
the flickering on the side is unknown. The new version(3.1.1) crashes. Maybe
the problem comes from the MSVC10 compiler. In the SteelWorms reposi-
tory the uploaded Assimp library was compiled using an MSVC10 compiler.

3



2.3 Controls

The user inputs are handled by the GLFW library. The camera can be moved
either with the keyboard or with the mouse. The keyboard controls are the
arrows for moving and 1 to zoom out and 2 to zoom in. The right mouse
button can be used to move the camera, the left mouse button can be used
to rotate the camera and the middle mouse button is to zoom. A tank can
be moved with the WASD buttons. The turret and the gun can be moved by
the IJKL buttons. A bullet can be shot with the SPACE button, the power
of the shoot depends on the amount of SPACE. A turn can be ended with
the ENTER key. The ESC key can be used to exit the game.

2.4 Gameplay

This version is a two player version. In one turn only one tank can be moved.
A turn ends in one minute or when the bullet reaches the terrain. After the
bullet is shot, the tank can not move. A bullet can be shot by holding the
SPACE key. The longer it is hold the bigger power it will be used to shoot.
There is water under and above the track. If a tank reaches water it’s health
will decrease. If a tank goes off track it dies. When only one tank lives, the
game ends and the result is written out in the console.

2.5 Transparency

To achieve transparency, a water surface is constructed. The Terrain class is
used to display the water. It is textured with 0.5 transparency. Before the
water, the tank trail is rendered. This is done to see the track under the
water. The track’s transparency is decreased with time until it reaches zero.

3 Effects

3.1 Shadow map

The only light source is the Sun. It is located at the middle of the ter-
rain. It does not produce too much light to be able to test the lighting.
The following website was used to understand and implement the lighting.
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-8-basic-shading/

4



The light for the shadow is defined as a directional light source. (Note:
This makes it strange, that the light is decreasing to the borders, but the
shadow is not getting longer. A perspective matrix should be used instead of
orthogonal.) The scene is being rendered from the light source into a Frame-
Buffer, which has a Texture attached to it. The texture will contain at each
position the distance from the light source. When rendering the scene using
the camera, the same distance is computed and compared with the one in the
texture. If it is less, then the fragment is in shadow. To improve the quality of
the shadows, PCF is being used. This is achived by using sampler2Dshadow
in the fragment shader. The comparison must be enabled in texture param-
eters. To requesting a value from the sampler2Dshadow, the x and y texture
coordinates and the light distance in the z are given. The sampler will com-
pare also neighboring texels and gives back a value between 0 and 1, the ratio
of the texels, which were less then the requested z. The following website
was used to understand and implement the shadow maps.http://www.opengl-
tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

3.2 Particle system - CPU

When the tanks are moving, they are leaving trails after themselves. This
is done by a CPU sided particle system. Each trail is a simple quad. On
initialization this quad is uploaded to the GPU memory only once. When a
new trail is added, it’s position is written into a buffer and it’s transparency
is 1. During each update, the transparency is decreased with a factor until
it reaches 0. On zero the particle is dead and not updated. On drawing
the position and the transparency of each living particle is uploaded and
drawn with one call. The following website was used to understand and
implement the particle system. http://www.opengl-tutorial.org/intermediate-
tutorials/billboards-particles/particles-instancing/

4 Features

4.1 Terrain

The heightmap is loaded from a grayscale image, where each pixel represents
the height. The same BMP loading algorithm is used, which loads textures.
The image must not have padding bytes at the end of the rows. A triangle is

5



built up from 3 pixels, so 4 neighboring pixel represents two triangles. The
pixel values(scaled to 0..1) are stored in a lookup table. With the function
getHeight(x, y) it is possible to get the height value for any x and y coor-
dinate. The idea of the algorithm which computes the heights is from the
”Introduction to 3D game programming with DirectX 9.0” book page 228-
231 written by ”Rod Lopez, Frank D. Luna”. The algorithm computes the
position of the 4 pixel values surrounded by the given x and y coordinate
and then interpolates the height value from the corresponding coordinates.

4.2 Tank

Each player controls one tank. The color of the tank shows the health of a
tank. By controlling the turret and the gun the shooting direction and angle
can be modified. Holding the space longer will make the bullet to fly further.
The closer the bullet reaches the center of an other tank the more damage it
does. The health of the tanks will decrease if they are in standing in water
in they current turn. The deeper the water the more they loose health.

4.3 Bullet

The trajectory of a bullet is computed by the following equation, which was
found on Wikipedia(Ballistic trajectory).

z = z0 + d tan θ − gd2

2(v cos θ)2

This equation computes the height of the bullet. The value v in the
equation is the velocity. The longer the SPACE key is held to shoot, the
higher this value will be. The value d is the distance from the shoot point.
Theta is the angle, which is currently 45 degrees. Value g is the gravity, set
to 9.81.

The collision is detected by comparing the height of the bullet with the
height of the terrain at the x and y coordinate of the bullet. If the difference
is negative, then the bullet has reached the ground. Then the distance of
the impact point and all the tanks are compared. If the distance is under a
threshold, then the health of the actual tank is decreased according to the
distance.

6



4.4 Illumination and textures

All the rendered objects, except the tank trails are being illuminated by the
Sun. The bullet is modeled with a sphere and textured. The water is modeled
with a heightmap and textured. Only BMP textures can be loaded, because
no external library is used for images. The specification can be found on
Wikipedia(BMP file format). This algorithm loads also the padding bytes at
the end of each row.

5 Experiment

The frame time can be turned on with F2, wireframe can be toggled with
F3 and F9 turns off transparency. The sampling quality of the textures can
be switched using F4 and the mipmapping can be switched using F5. Note:
The mipmaps are computed even if they are switched off, but they are not
used. The shadows with the linear filtering have a better and smoother
result. The PCF only works when using linear filtering. The water surface
is rendered faster using mipmapping. When using mipmapping the render
time is around 2.7 ms, without mipmap using nearest 3.2 ms, using linear 3.5
ms. Shooting a bullet can decrease to 4.4 ms, because of the high polygon
count of a sphere.

6 Additional libraries

• GLFW - An OpenGL library http://www.glfw.org/

• GLEW - The OpenGL Extension Wrangler Library http://glew.sourceforge.net/

• GLM - OpenGL Mathematics http://glm.g-truc.net/

• Assimp - Model loader http://assimp.sourceforge.net/ Note: See Ani-
mated Objects

7


