2nd Submission | June 2014

CATastrophe

FROHNWIESER | 0726397
LUEGER | 9807403

In this document we describe the features and basic
gameplay of our game for the second (and final)
submission for the course 186.831 computergraphics.

Gameplay

In this jump and run game you are able to experience the world through the eyes of a cat. The
goal is to destroy as much objects as possible and create as much chaos as doable by a small
cat. Thus, you earn points for every object you destroy. But be aware of obstacles. You can also
lose health points when you hit harmful objects. This will hurt you and slow you down. Since the
time is limited you will have to decide quick wheater to hit an object or not.

When the start screen appears, press enter to start the game. Now you are in a junkyard at the
outskirts of a city. You can move around the three dimensional space for a maximum time of five
minutes - or as long as you have enough (more than zero) health points.

Walk around the scene by using the W, A, S and D keys. Use shift in combination with the W
key to sprint or press space to jump. You can check this up anytime in the help screen by
pressing F1. Note that you can jump farther if you sprint before hitting space but keep in mind,
that you can only sprint for a limited timespan. After that you will have to rest, i.e. you are not able
to sprint any longer for a certain time. Moving the mouse will let you look around. By clicking the
left or right mouse button you can hit an object with your paw. The object will then be thrown to
one side. If the impact was large enough, you will get points differing on how hard the object was
to find or to throw. So, the best of them are pretty good hidden on high up places. Also, not all
objects are moveable - you will have to find out which are and which are not.

Pressing ESC will abruptly abort the game. Additional game modes and functions can be
enabled during the game by pressing the keys F2 - F11.

page | 1

Features
In short, the game includes the following features:

object loader (loading various 3D object (*.obj) files together with textures with Assimp)
physics and collision detection (done with bullet)

textured Objects (either loaded with the objects or separately)

illumination of the scene objects

a shadow map to simulate shadows

graphic effects: motion blur and particles

start- help- & endscreen

a Head-Up-Display (HUD) with a countdown timer and health and game points
gameplay including moveable camera and jump- sprint- & hit controls

different Sounds for different actions or game states

a skybox to simulate the environment

random grass billboards

a great variety of additional (toggleable-) functions (F,-keys)

Implementation Details

In the following we briefly describe how we implemented each of the requirements. For further
details please look at the source code (and contained comments). For the implementation we
often used code from the OpenGL tutorials at http://www.opengl-tutorial.org/ or
http://ogldev.atspace.co.uk/ and adepted it to our needs. Without these sites this game would not
have come into existence. Other sources, tutorials and forums (thanks

http://stackoverflow.com/) were also used as stated in the texts below.

Achievement

We have included the achievement cow twice. Throwing the cow will get you one hundred
points. One cow is hidden on top of the red container in the back of the scene. To get there you
have to move the near by wood box to the container to create a stairway where you can jump on.
The other cow is on the bus next to the windmill. Here you have to climb along on top of the
fences to get there. You can get up at them at the cardboard boxes behind the wooden fence.

Animated Objects

There is one animated object in the scene. The windmill behind the fence is programmed to
perform a hierarchical animation. For this, it consists of three parts. A base (static) scaffold, a

page | 2

http://www.google.com/url?q=http%3A%2F%2Fwww.opengl-tutorial.org%2F&sa=D&sntz=1&usg=AFQjCNFf-z5wyyQmpx3534fED2M2SR1moA
http://www.google.com/url?q=http%3A%2F%2Fogldev.atspace.co.uk%2F&sa=D&sntz=1&usg=AFQjCNF2M2HYNl5kqINVKkP7nu20-r55og
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2F&sa=D&sntz=1&usg=AFQjCNEc58ufm1d4pfZDS_teRkt55LoC8g

turning bracket and a rotating wheel. Each model has its own model matrix. Only the bracket and
the wheel is animated. The bracket turns either left or right on the y-axis for a random timespan,
the wheel turns consistently clockwise around the z-axis. To keep the wheel turning with the
bracket its model matrix is multiplied with the brackets.

For the view frustum culling the bounding box is a combination of all extreme x,y,z values, i.e. the
maximum height with the wheel on the base and maximum width with the turning bracket
included.

Billboard

A billboard is a two-dimensional graphic which always faces the camera. Hence it appears to be
turning along with camera movement and generates a three-dimensional impression. This is
often used to simulate simple environment objects such as trees. For this game we mainly
implemented them to be able to use them for the dust particles in the particle system.
Nevertheless we also use them to indicate won points (star), damage (broken heart) and to
generate random grass on the ground. The face direction of the billboard is calculated in the
GPU with a geometry shader. The code was taken from".

Complex Objects

All scene objects (excluding - of course - 2D objects like texts and billboards) are complex. For
this we have implemented an object loader (“ObjectLoader”) which loads OBJ files into the
game. This is done by loading the individual meshes (vertices, normals and indices) and
textures along with the UV coordinates and storing them into a “Model” object. Textures can
consist of either an image file or simple colors. All objects and their parameters are handled in
the “SceneHandler” class. Our non-convex object is the satellite station behind the fence on side
near the sundown.

Controls

The cat is controlled both with the keyboard and the mouse. For this we use the “standard”
(most commonly known) game-play controllers. The keys W, A, S and D are used to move the

cat in certain directions, whereas the mouse changes the view-direction. Space is used to jump,

the left or right mouse button is used to hit an object with the paw and pressing the shift key will
make the cat run faster. The escape key terminates the current game. The special keys F1 -

F11 enable a great range of additional features.

The keys and mouse is polled and read with GLFW. If a defined key is hit or the mouse moved
we then take further measures, like moving the camera or starting an interaction (i.e. the paw).
This happens in the “UserlnputHandler” class. Movement happens with bullet and is there frame
rate independent. The keyboard layout is described in the following two tables on the next page.

' http://ogldev.atspace.co.uk/www/tutorial27/tutorial27.html

page | 3

http://www.google.com/url?q=http%3A%2F%2Fogldev.atspace.co.uk%2Fwww%2Ftutorial27%2Ftutorial27.html&sa=D&sntz=1&usg=AFQjCNGTjQveJGj4Ct955ApSEWTduQGWnA

Keyboard layout

WIS move forward/backward
A/D move left/right

Shift Run

Space Jump

Mouse Left/Right Hit

Mouse Look around
ESC Quit Game
F1-F11 Special Keys

Special Keys

F1 Help show help screen

F2 Frame Time on/off prints the frame time in ms and fps along other
game relevant information

F3 Wire Frame on/off shows only the wireframes of the objects

F4 Textur-Sampling-Quality: toggle between texture sampling mode. Note:
Nearest Neighbor / Mip Mapping-Quality must be set to Off before
Bilinear

F5 Mip Mapping-Quality: Off change mip map quality
/ Nearest Neighbor /
Linear

F6 Motion Blur on/off always show motion blur

F7 Shadows on/off toggle shadows

F8 Viewfrustum-Culling toggle view frustum culling
on/off

F9 Transparency on/off toggle transparency

F10 Fullscreen on/off toggle fullscreen

F11 Bullet Debug on/off show bullet collision bodies

page | 4

If a special key is hit a short feedback message with the changed state is displayed at the center
of the screen. The currently used texture sampling method is shown in the left bottom corner
when F2 is pressed.

Effects

We have implemented the following three effects. Together they are worth four points from the
table of effects for this course.

Shadow Map (with PCF)

During a separate render cycle the scene is rendered from the point of the lightsource. Visible
objects which cover other objects then generate invisible parts of the scene which will be later
viewed as shadows. For this only the meshes without the textures are rendered and the frame is
then stored in a special shadow map texture (“sampler2DShadow”) in a frame buffer. Hence,
coordinates of the shadow have to be transformed from the world space into the different light
source and view space. Again, view frustum culling is used to minimize the rendered vertices.
To make the shadows appear smoother Percentage Closer Filtering (PCF) is used. This is done
in the fragment shader where the shadow map is sampled around the current pixel and its depth
compared to all the samples. Afterwards the average is taken to get a smoother edge between
the shadow and the light. To show the effect, the shadow map can be enabled or disabled by
pressing F7.

To implement this effect we have taken code samples from two tutorials?®.

Motion Blur

During a special (pre-) render phase the scene is rendered into a texture along with a separate
texture with the motion vectors of each pixel into two frame buffers. This is similar to the render
phase in the shadow map. In order to able to compute the motion vectors the last model matrix
of each object has to be stored and then taken to compute the vector between the objects
position in the last frame and now. Afterwards the texture with the scene is rendered to the
screen along with blurred colors along the motion vectors taken from the second buffer. This is
also frame rate independent in order to make the effect appear identical on different machines or
with different frame rates. The effect is only used while sprinting to generate a speeding effect.
To demonstrate the effect, motion blur be can also always enabled by pressing F6.

To make this effect working we have taken code samples from two tutorials*®.

GPU-Particle System
A particle system is a cluster of similar small objects which have common characteristics to

2 http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping
3 http://ogldev.atspace.co.uk/www/tutorial42/tutorial42.html

4 http://john-chapman-graphics.blogspot.co.uk/2013/01/per-object-motion-blur.html
5 http://ogldev.atspace.co.uk/www/tutorial4 1/tutorial41.html

page | 5

http://www.google.com/url?q=http%3A%2F%2Fwww.opengl-tutorial.org%2Fintermediate-tutorials%2Ftutorial-16-shadow-mapping%2F&sa=D&sntz=1&usg=AFQjCNE2R4KlYL3FWv_GBFhAEZhH46ZSow
http://www.google.com/url?q=http%3A%2F%2Fogldev.atspace.co.uk%2Fwww%2Ftutorial42%2Ftutorial42.html&sa=D&sntz=1&usg=AFQjCNHUQ1d4d5V2TldoqXWjDLf_LINaeg
http://john-chapman-graphics.blogspot.co.uk/2013/01/per-object-motion-blur.html
http://www.google.com/url?q=http%3A%2F%2Fogldev.atspace.co.uk%2Fwww%2Ftutorial41%2Ftutorial41.html&sa=D&sntz=1&usg=AFQjCNFBqLmbd23e4phTRkH0z7GuBKFQNg

simulate natural phenomena. Here we use it to generate a dust effect each time an object hits
the ground or an static object. For this every time the object hits the ground we generate a new
particle system starting with one launcher particle at the position where the impact occurred.

Then new particles with random moving directions (taken from a texture with random vectors)

are generated in the GPU by using a special geometry shader. After a predefined period of time
these particles generate a number of new particles for a second wave which will then be the last

ones and the particles disappear. We only have control over the number of generated particles
and their speed and lifetime. The rest is up to the GPU.

Most of the code for this effect was taken from a tutorial®.

Experimenting with OpenGL

Almost all scene objects are Vertex-Buffer (VBO) and Vertex Array Objects (VAO), since almost
all objects are consisting of “Mesh”es. Other VB|AO objects are “Renderlmage”, “RenderQuad”
or “RenderText”.

Buffer-Objects, i.e. FBOs (Frame Buffer Object), are used in “MotionBlur” and “ShadowMap”.
The performance output in milliseconds and frames per second is displayed along the rendered
object count (left bottom corner number) by pressing F2.

The wireframe mode is enabled by pressing F3.

It is also possible to change the texture quality of the scene objects during the game. This is
done by either pressing F4 for the texture sampling quality or F5 for mip mapping quality. Note
that the mip map quality has to be set to off in order to use the texture sampling functionality.

Freely Moveable Camera

This is done in the “UserlnputHandler” class. Here we read the keys and mouse movement and
calculate the view matrix which is then used to move the camera and calculate the model view
projections. The position of the camera is defined on startup and all objects are made bigger to
simulate the world from the smaller position of a cat.

Frustum Culling

Frustum Culling is used to determine whether an object is visible or not. If it is not visible from
the current position it will not be rendered in order to save CPU (and GPU) time. For this we
calculate a quadratic bounding box for every scene object which encases all parts of the object.
This is done by saving the minimum and maximum x,y,z values of the objects vertex points
when loading the object (see “ObjectLoader”). With this values the bounding box is then
calculated. Afterwards, during the game, each time the scene is rendered it is checked if the
object (except for the skbox) is inside the view frustum (see “isInsideViewFrustrum” in

¢ http://ogldev.atspace.co.uk/www/tutorial28/tutorial28.html

page | 6

http://www.google.com/url?q=http%3A%2F%2Fogldev.atspace.co.uk%2Fwww%2Ftutorial28%2Ftutorial28.html&sa=D&sntz=1&usg=AFQjCNEa-JIJz6aEzm3QQp5gIM5T2SKjSw

“SceneObject”).

This works perfectly with scene objects but produces problems with the ground (almost always
rendered). This might be due to relatively small Z-Near value (as discussed during the second
feedback talk). The number of displayed scene objects is printed on the lower left corner when
F2is pressed.

Hit and Throw Objects

Non-static objects can be hit and thrown when hit with a paw. When hit with the left paw an
object will be thrown to right, when hit with the right paw it will be thrown to the left.

Since the paw is only animated without collision detection the hit objects have to be detected
otherwise. For this we cast a ray from the center of the screen into infinity and try to find an
object along the path which is nearer to the camera than a predefined distance. To make things
easier, when pressing hit, three rays (beginning in the center of the screen and then stepwise
going down on the y-axis to the bottom) will be casted in order to be able to detect also objects
slightly off-center.

Once an object is detected it will be thrown in the according direction and the damage and health
points will be incorporated. Health points will be taken into account only once. Damage points
every time the object is hit (or run against at). The direction of the impulse is calculated as the
cross product of the vector from the camera to the objects center and an (perpendicular) up
vector. According to the mouse button pressed this impulse vector will be used with a positive or
negative sign to throw the object to the left or right side.

Images and Text

Images and texts are used as textures to display the start, help and stop screens and print some
game statistics to the screen as simple text. Since these images are of course only
two-dimensional they need no three dimensional (vertex) models behind them. They are also
always rendered last to make them appear in front of the view.

Lightning/lllumination and materials

Lighting is done with an pre-defined light source in the code and rendered in the fragment
shader. The lighting consists of separately calculated diffuse, ambient and spectacular light
parts. Additionally, a shadow is also rendered and incorporated into the scene.

All scene objects are textured (they are all of type “Model”’). Additionally, 3D objects (type
“‘RenderObject” or “StaticObject”) are also illuminated. Since the other objects are either of type
“‘Renderlmage” (start-, help- or end screen), “RenderText” (HUD texts) or are some form of
“Billboard” which are basically only 2D images they don’t need any illumination.

The texturing is done in the “Texture” class and rendered with the according fragment shader(s).

page | 7

The illumination is represented with the “LightSource” parameters and rendered with the
according vertex shader(s). Texturing happens with texture images or embedded colors and the
UV coordinates for each object. The light source is described with x, y, z coordinates for the
position r, g, b values for the light color and an additional parameter for the light intensity.

Modeling Tools

Most of the modeling was done in SketchUp 20147, as this is a very fast and easy way to handle
3D models. In addition it comes with a huge community, so we had access to numberless free
3D models. Besides that we made use of the free modeling software Blender®.

All models were exported as *.obj files.

Moving Objects

Objects are loaded as scene objects. Here we have the possibility to translate or rotate them. By
combining these basic movements we can generate a more advanced movement (e.g. for the
paw) in the update method. This is done by extending the “SceneObject” class (or extended
complex object classes such as the “RenderObject” class) and overriding the update method
there.

Sound
Some interactions are also accompanied by sound samples. For this we use a special sound
library (see below) which was easy to include in the game and also enables us to use

three-dimensional sounds, e.g. when an object hits the ground. The sounds were found in the
internet and are free to use.

Skybox
To simulate a rich terrain around the game scene a skybox is used. For this we put a sphere

over the scene with a landscape texture of 360deg. This effect makes use of a special cube map
texture with six sides (mind that the ground is not use). The code was taken from®.

Textures

The texture mapping is done in the according Object class (usually in the constructor) with UV

7 http://www.sketchup.com/de
8 http://www.blender.org/
® http://ogldev.atspace.co.uk/www/tutorial25/tutorial25.html

page | 8

http://www.google.com/url?q=http%3A%2F%2Fwww.sketchup.com%2Fde&sa=D&sntz=1&usg=AFQjCNE6qnJ1XFpKPovgvA3zI_HYTTJQHw
http://www.google.com/url?q=http%3A%2F%2Fwww.blender.org%2F&sa=D&sntz=1&usg=AFQjCNHhXRzD_dKD5soMcymht04vTlVQTA
http://www.google.com/url?q=http%3A%2F%2Fogldev.atspace.co.uk%2Fwww%2Ftutorial25%2Ftutorial25.html&sa=D&sntz=1&usg=AFQjCNEAa64qhsMz24cieCjyXYysKIrg8w

coordinates (see below for details). Here we have the possibility to either use the texture
mapping (images) in the *.mtl file provided with the object file, embedded colors from the object
file or override the objects texture with our own texture image. For the “RenderText” we
calculated our own UV coordinates for each letter. “Renderlmage” uses a predefined UV
coordinate. Additionally there is also a cube map texture for the skybox and a random texture
with random vector coordinates for the particle systems particle moving directions.

Transparency

Transparency takes some special calculations. Here, translucent objects are always rendered

last with the depth mask disabled. For this, first, we render only objects where the scene objects

flag bTranslucent is set to false. Afterwards we take all translucent objects (where bTranslucent
is true) and sort them according to their distance to the camera (from back to front) and then

draw them. This approach is similar as described in'°. Additionally there are also transparent
billboard objects (heart, star, grass and dust particles). Since it is relatively difficult to order these
objects, they are only rendered last without taking their position into account. Thus, there can be
small render errors when displaying two or more of them side by side. Transparency can be

enabled or disabled by pressing F9.

Transparent objects are the fences and the bottles on the bench between the vending machine
and the fence. The bottles are line up there to demonstrate the algorithm described above when
moving around them.

Additional libraries

We make use of the following additional libraries:

Assimp (object loading) http://assimp.sourceforge.net/
Bullet (physics) http://bulletphysics.org/wordpress/
DevlL (image loading) http://openil.sourceforge.net/
Glew (OpenGL extensions) http://glew.sourceforge.net/

GLFW (OpenGL window and controls) http://www.glfw.org/

GLM (OpenGL mathematics library) http://glm.g-truc.net/0.9.5/index.html

irrKlang (sound) http://www.ambiera.com/irrklang/

10 http://blogs.msdn.com/b/shawnhar/archive/2009/02/18/depth-sorting-alpha-blended-objects.aspx

page | 9

http://www.google.com/url?q=http%3A%2F%2Fassimp.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNEJ5iKgTTjJPeoV8XJCjXHjmxF95Q
http://www.google.com/url?q=http%3A%2F%2Fbulletphysics.org%2Fwordpress%2F&sa=D&sntz=1&usg=AFQjCNGwraYWb4JyoBgZxPWbH5BhnsEu5w
http://www.google.com/url?q=http%3A%2F%2Fopenil.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNFbnT_sotAdg66XnwHgQWMXdAaQ_w
http://www.google.com/url?q=http%3A%2F%2Fglew.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNH2b74PPTOeKGN2jj3eQVNiQ2nE0Q
http://www.google.com/url?q=http%3A%2F%2Fwww.glfw.org%2F&sa=D&sntz=1&usg=AFQjCNHM-3cKl2wVuohefEPFCqd1hM306Q
http://www.google.com/url?q=http%3A%2F%2Fglm.g-truc.net%2F0.9.5%2Findex.html&sa=D&sntz=1&usg=AFQjCNFPuTUN2u7aosvPheg5_oW-41aIjQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ambiera.com%2Firrklang%2F&sa=D&sntz=1&usg=AFQjCNH0-2z4G5zOuN41XSOlUFOh-LKIfw
http://www.google.com/url?q=http%3A%2F%2Fblogs.msdn.com%2Fb%2Fshawnhar%2Farchive%2F2009%2F02%2F18%2Fdepth-sorting-alpha-blended-objects.aspx&sa=D&sntz=1&usg=AFQjCNHPC6-_z1AVQhSFXuGe59qg-GTS_w

