Bouncing Blocks

Controls
General
Description Button
Reset R
Debug T
Camera Movement (debug mode only) Arrow keys
Pause P
Continue Space
Wireframe F3
partyMode F7
Frustum culling F8
Players
Player name Up Down Left Right
Blue W S A D
Red I K J L
Green Arrow up Arrow down Arrow left Arrow right
Yellow Numpad 8 Numpad 2 Numpad 4 Numpad 6




Effects

Shadow Mapping

We use shadow mapping with a directional lightning on all objects. For this, we first render a
depthmap to a framebuffer (seen from the light source) and then compare in a second pass the
z values of the objects to see if the current fragment is hidden. If this is the case, the fragment is
rendered darker. To create a smooth transition, we sample the shadowmap four times. A very
helpful resource for accomplishing this task was found in:
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

Bloom

We implemented Bloom as follows: First the scene is rendered to a texture in a FrameBuffer
which is four times smaller than the normal resolution. Then it is processed with a Gaussian
Filter through two steps. The first substracts a certain amount from the color (to only leave the
brightest spots visible) and blurs the texture horizontally. The second blurs the result vertically.
These two steps also work through rendering to textures bound to FrameBuffers. Then, in the
final rendering stage, the amount of the according fragment on the downsampled, blurred image
is multiplied by the factor of 9 and added to the normal color value to achieve the Bloom effect.
The value of the factor was found out through try and error and 9 was considered best.

Helpful information for accomplishing this task were how to use framebuffers:
http://antongerdelan.net/opengl/framebuffers.html
http://en.wikibooks.org/wiki/OpenGL_Programming/Post-Processing

and how to gaussian blur:
http://www.gamerendering.com/2008/10/11/gaussian-blur-filter-shader/

Cel Shading

We use cel shading for all objects. In order to keep the details of our self painted textures we
decided to use cel shading for lighting only. We clamp the value of light intesity via a 1D-Texture.

Contours

Countours are drawn with the back faces of the objects. We use interpolated normals to
decrease the size of the front polygons. Those normals are calculated in a pre-processing step
(You can find more on that in section “Google Buffer Protocol”). We decided to decrease the
size of the front faces, so that there are no overlaps of faces when colliding objects.

Helping resource: http://www.sunandblackcat.com/tipFullView.php?l=eng&topicid=15

Particle System

We use a CPU based Particle System. We took the advice on this page:
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
The particles are behind the play field. You see there are colored points popping up from
nowhere. Use the debug mode to navigate to get a better look.



http://www.google.com/url?q=http%3A%2F%2Fwww.opengl-tutorial.org%2Fintermediate-tutorials%2Ftutorial-16-shadow-mapping%2F&sa=D&sntz=1&usg=AFQjCNE2R4KlYL3FWv_GBFhAEZhH46ZSow
http://www.google.com/url?q=http%3A%2F%2Fantongerdelan.net%2Fopengl%2Fframebuffers.html&sa=D&sntz=1&usg=AFQjCNFpaIb3hVEFSP9QTHdCvnDXLRpaNQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikibooks.org%2Fwiki%2FOpenGL_Programming%2FPost-Processing&sa=D&sntz=1&usg=AFQjCNFIIzyoxGBtwBS_0wvMuSv-XEbMVA
http://www.google.com/url?q=http%3A%2F%2Fwww.gamerendering.com%2F2008%2F10%2F11%2Fgaussian-blur-filter-shader%2F&sa=D&sntz=1&usg=AFQjCNHlE2lMoYozzyBJeZTJvsavgM_dkA
http://www.google.com/url?q=http%3A%2F%2Fwww.sunandblackcat.com%2FtipFullView.php%3Fl%3Deng%26topicid%3D15&sa=D&sntz=1&usg=AFQjCNGsLAixOkcl8oOTrerlRyd6qau_Hg
http://www.google.com/url?q=http%3A%2F%2Fwww.opengl-tutorial.org%2Fintermediate-tutorials%2Fbillboards-particles%2Fparticles-instancing%2F&sa=D&sntz=1&usg=AFQjCNGJCIU7pWKRMwvvVv5W_Aw-W4cLkg

Complex Objects

We have the cow mesh, the laser mesh as complex objects in our scene. All objects are loaded
via assimp or to be precise, have been loaded with assimp, but are now loaded as binaries with
google buffer protocol.

Animated Objects

We have one hierachical object: It consists of the player cube, which is connected with the stone
cylinder which is connected with the cow. The matrices are multiplied with one another and the
cow itself is spinning as well.

View-Frustum-Culling

For Frustum culling we used a rather old tutorial:
http://www.crownandcutlass.com/features/technicaldetails/frustum.html The implementation
was not too hard, even though we should note, that the flame thrower with its particles does not
get culled, when it is out of view.

Transparency

The text of the gui as well as our flame particles have transparent and semitransparent regions.
It is not possible to turn them on and off.

Experimenting with OpenGL

In our game we use:
Vertex-Buffer-Objects (VBO)
Vertex Array Objects (VAO)
Frame Buffer Object (FBO)
Mip Mapping
Textur-Sampling-Quality (Trilinear Filtering)
Frustum Culling
o Wireframe (On/Off)
Those effects can’t be turned off.


http://www.google.com/url?q=http%3A%2F%2Fwww.crownandcutlass.com%2Ffeatures%2Ftechnicaldetails%2Ffrustum.html&sa=D&sntz=1&usg=AFQjCNEMMXMgjN8eAjX1hISs44Y-8pULww

Used Libraries

Glew&Glfw Using OpenGL & Window management
Assim Loading meshes

OpenAL Sounds

Bullet Physics

GLM Math

Google Buffer Protocol* Saving and loading binaries

* We are using Google Buffer protocol, because our loading time for meshes increased
drastically after we started calculating interpolated normals of all vertices. The protocol buffer
helps us, to save all calculations and mesh data in binary files. Those can be read way faster.

Used Tools

Blender All meshes were created in Blender (except of the cow)

Gimp We used gimp to make some textures tileable (like the bricks texture)
Inkscpe Only the logo

Audacity Record sounds

Special features

We have a party mode, in which all players can rotate in all directions and other sounds are
played. Have fun!

All assets, except of the cow, are selfmade. The sounds are recordings of our beatuiful voices
and the textures are painted with water colors. If you look closely, you can even see brush
strokes in some textures. You probably ask yourself, how we managed to create such beatuiful
paintings. The answer is, we watched a lot of Bob Ross while painting.


http://www.google.com/url?q=http%3A%2F%2Fglew.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNH2b74PPTOeKGN2jj3eQVNiQ2nE0Q
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fglfw%2F%3Fsource%3Drecommended&sa=D&sntz=1&usg=AFQjCNHFMBN4sM3WHNdMVBkzpWTUnwhqrw
http://www.google.com/url?q=http%3A%2F%2Fassimp.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNEJ5iKgTTjJPeoV8XJCjXHjmxF95Q
http://www.google.com/url?q=http%3A%2F%2Fkcat.strangesoft.net%2Fopenal.html&sa=D&sntz=1&usg=AFQjCNGVf0HwR3eox5aXjIQXmSyr_IG2ww
http://www.google.com/url?q=http%3A%2F%2Fbulletphysics.org%2Fwordpress%2F&sa=D&sntz=1&usg=AFQjCNGwraYWb4JyoBgZxPWbH5BhnsEu5w
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fogl-math%2F&sa=D&sntz=1&usg=AFQjCNHcNnq9aX5Zo0VLv6qH1jmKuqFhcA
https://code.google.com/p/protobuf/
https://www.youtube.com/watch?v=ajrSWiAI_wM

